TURN-NADO® GEARHEAD LATHE w/DRO MODEL SB1046PF 21" X 60" MODEL SB1047PF 21" X 80" MODEL SB1056F 18" X 40" MODEL SB1057F 18" X 60" MODEL SB1048PF 21" X 120" MODEL SB1058F 18" X 80" **OWNER'S MANUAL** # South Bend Lathe Co. Hundreds of Thousands of Lathes Sold With a Tradition of Quality Since 1906! © August, 2011 by South Bend Lathe Co. For Machines Mfg. Since 3/11 # **Scope of Manual** This manual helps the reader understand the machine, how to prepare it for operation, how to control it during operation, and how to keep it in good working condition. We assume the reader has a basic understanding of how to operate this type of machine, but that the reader is not familiar with the controls and adjustments of this specific model. As with all machinery of this nature, learning the nuances of operation is a process that happens through training and experience. If you are not an experienced operator of this type of machinery, read through this entire manual, then learn more from an experienced operator, schooling, or research before attempting operations. Following this advice will help you avoid serious personal injury and get the best results from your work. ### **Manual Feedback** We've made every effort to be accurate when documenting this machine. However, errors sometimes happen or the machine design changes after the documentation process—so the manual may not exactly match your machine. If a difference between the manual and machine leaves you in doubt, contact our customer service for clarification. We highly value customer feedback on our manuals. If you have a moment, please share your experience using this manual. What did you like about it? Is there anything you would change to make it better? Did it meet your expectations for clarity, professionalism, and ease-of-use? South Bend Lathe, Inc. c/o Technical Documentation Manager P.O. Box 2027 Bellingham, WA 98227 Email: manuals@southbendlathe.com ### **Updates** For your convenience, any updates to this manual will be available to download free of charge through our website at: www.southbendlathe.com ### **Customer Service** We stand behind our machines. If you have any service questions, parts requests or general questions about your purchase, feel free to contact us. South Bend Lathe Co. P.O. Box 2027 Bellingham, WA 98227 Fax: (360) 676-1075 (International) Fax: (360) 734-1639 (USA Only) Email: sales@southbendlathe.com # **Table of Contents** | INTRODUCTION | 3 | Power Connection | 30 | |----------------------------------|----|---|----| | About This Machine | 3 | Test Run | 32 | | Foreword | 3 | Spindle Break-In | 35 | | Capabilities | 3 | Recommended Adjustments | 35 | | Features | 3 | OPERATION | | | General Identification | 4 | Operation Overview | | | Controls & Components | 5 | Chuck & Faceplate Mounting | | | Master Power Switch | 5 | Installation & Removal Devices | | | Headstock | 5 | Chuck Installation | | | Control Panel | 6 | Registration Marks | | | Carriage | 6 | Chuck Removal | | | Carriage Feed Clutch Knob | 7 | Scroll Chuck Clamping | | | Tailstock | 7 | 4-Jaw Chuck | | | Safety Foot Brake | 8 | Mounting Workpiece | | | SB1046PF, SB1047PF, SB1048PF | 9 | Faceplate | | | Product Specifications | | Tailstock | | | SB1056F, SB1057F, SB1058F | 13 | Positioning Tailstock | | | SAFETY | 17 | Using Quill | | | Understanding Risks of Machinery | | Installing Tooling | | | Basic Machine Safety | | Removing Tooling | | | Additional Metal Lathe Safety | | Offsetting Tailstock | | | Additional Chuck Safety | | Aligning Tailstock to Spindle Centerline | | | - | | Centers | | | PREPARATION | | Dead Centers | | | Preparation Overview | | Live Centers | | | Things You'll Need | | Mounting Dead Center in Spindle | | | Power Supply Requirements | | Removing Center from Spindle | | | Availability | | Mounting Center in Tailstock | | | Full-Load Current Rating | | Removing Center from Tailstock | | | Circuit Requirements | | Mounting Workpiece Between Centers | | | Grounding Requirements | | Steady Rest | | | Unpacking | | Follow Rest | | | Inventory | | Carriage & Compound Rest Locks | | | Cleaning & Protecting | | Compound Rest | | | Physical Environment | | Four-Way Tool Post | | | Electrical Installation | | Installing Tool | | | Lighting | | Aligning Cutting Tool with Spindle Centerline | | | Weight Load | | Micrometer Stop | | | Space Allocation | | Manual Feed | | | Lifting & Moving | | Carriage Handwheel | | | Leveling & Mounting | | Cross Slide Handwheel | | | Leveling | | Compound Rest Handwheel | | | Bolting to Concrete Floors | | Spindle Speed | | | Assembly | | Determining Spindle Speed | | | Lubricating Lathe | | Setting Spindle Speed | | | Adding Coolant | 30 | Serving Spinare Speed | 07 | | Power Feed | 54 | |--|----| | Power Feed Controls | 55 | | Setting Power Feed Rate | 57 | | End Gears | 58 | | Standard End Gear Configuration | 58 | | Alternate End Gear Configuration | 58 | | Threading Controls | 59 | | Headstock & Gearbox Threading Controls | 59 | | Apron Controls | 60 | | Thread Dial | 61 | | Thread Dial Chart | 61 | | Chip Drawer | 63 | | Coolant System | 63 | | Rod Support | 64 | | ACCESSORIES | 65 | | MAINTENANCE | 66 | | Maintenance Schedule | 66 | | Cleaning & Protecting | | | Maintenance Chart | | | Lubrication | 68 | | Headstock | | | Quick-Change Gearbox | 69 | | Apron | 70 | | One-Shot Oiler | 71 | | Longitudinal Leadscrew | 72 | | Ball Oilers | 72 | | End Gears | 73 | | Coolant System Service | 74 | | Hazards | 74 | | Adding Fluid | 75 | | Changing Coolant | 75 | | Machine Storage | 76 | | SERVICE | 77 | | Backlash Adjustment | | | Compound Rest | 77 | | Cross Slide | | | Leadscrew End Play Adjustment | 78 | | Gib Adjustment | 78 | | Half Nut Adjustment | 80 | | V-Belts | 80 | | Spindle Clutch Adjustment | | | Leadscrew Shear Pin Replacement | | | Gap Insert Removal & Installation | 86 | | Gap Removal | 86 | | Gap Installation | 87 | | TROUBLES HOOTING | 00 | | ELECTRICAL | 91 | |------------------------------------|-----| | Electrical Safety Instructions | 91 | | Correcting Phase Polarity | 92 | | Wiring Overview | 93 | | Component Location Index | 94 | | Electrical Cabinet Wiring | 95 | | Spindle Motor | 97 | | Coolant Pump | 97 | | Control Panel | 98 | | Additional Components | 99 | | Power Supply Connection | 99 | | PARTS | 100 | | Headstock Housing | 100 | | Headstock Gears | 103 | | Gearbox | 107 | | End Gears | 115 | | Motor & Headstock Oil System | 116 | | Saddle & Cross Slide | 118 | | Tool Post & Compound Rest | 121 | | Bed & Shafts | 122 | | Stands & Panels | | | (SB1046PF-47PF, SB1056F-58F) | 124 | | Stand & Panels (SB1048PF) | 126 | | Brake | 128 | | Tailstock | 129 | | Thread Dial | 130 | | Micrometer Stop | 130 | | Steady Rest | 131 | | Follow Rest | 131 | | Electrical Cabinet & Control Panel | 132 | | Accessories | 133 | | Front Machine Labels | 134 | | Rear Machine Labels | 135 | | WARRANTY | 137 | 16" South Bend Precision Toolroom Lathe (Circa 1958) ### **About This Machine** #### **Foreword** "The screw cutting engine lathe is the oldest and most important of machine tools and from it all other machine tools have been developed. It was the lathe that made possible the building of the steamboat, the locomotive, the electric motor, the automobile and all kinds of machinery used in industry. Without the lathe our great industrial progress of the last century would have been impossible." —**How To Run a Lathe**, 15th Edition, South Bend Lathe. The lathe represented in this manual is a modern day version of the screw cutting lathes that trace their roots back to the 1700's, which were themselves technological improvements of the bow lathe that can be traced back thousands of years to the ancient Egyptians. Now, almost 300 years later, these modern "screw cutting" lathes are not just a piece of refined machinery, but a culmination of human ingenuity and knowledge embodied into the design and synergy of thousands of interworking parts—some of which represent the life's work and dreams of many inventors, mechanical engineers, and world-class machinists—including the likes of Leonardo da Vinci, Henry Maudsley, and the founders of South Bend Lathe, John and Miles O'Brien. And now the torch is passed to you—to take the oldest and most important type of machine tool—and carry on the tradition. As the operator of a South Bend Lathe, you now join the ranks of some very famous and important customers, such as Henry Ford, who used the machines he purchased to help him change the world. ### **Capabilities** These Turn-Nado® Gearhead Lathes are built for daily use in a busy industrial setting. Loaded with many nice features and high-precision parts, these lathes excel at making fine tools, dies, thread gauges, jigs, and precision test gauges—however, they are by no means delicate. Thick castings, heavy weight, and quality construction throughout provide the necessary brawn for demanding production and manufacturing tasks. #### **Features** These 16-Speed Gearhead Lathes are packed with standard features and equipment, such as a complete coolant system, easy-to-clean chip drawer, one-shot way lubrication system, included steady and follow rests, chuck guard, adjustable work lamp, foot brake, powered cross feed, 3- and 4-jaw chucks, faceplate, and premium Allen-Bradley contactors, thermal relays, and fuse system. Spindle speeds are controlled by convenient headstock levers, which allow the operator to quickly set the spindle speed within the available range of 20–1600 RPM. The beds of these lathes are constructed with Meehanite castings that are hardened and precision-ground in the traditional three V-way prismatic design—long used on South Bend Lathes for its accuracy, durability, and rigidity. The headstocks feature quick-change gear levers and the carriages include an adjustable clutch that disables automatic carriage feed when it
contacts the included feed stop or in the event of a crash. These lathes feature a spindle clutch that allows the operator to switch between forward and reverse without shutting down the motor—a great time saver. To further ensure a high degree of accuracy, these lathes are equipped with high-quality German spindle bearings and a Fagor 2-Axis DRO. The spindles are D1-8 camlock with an MT#7 taper and 3.15" bore. The tailstocks have an MT#5 taper and 6.5" of quill travel. ### **General Identification** Figure 1. General identification (Model SB1058F shown). - **A.** Quick-Change Gearbox Controls - **B.** Headstock Controls - **C.** D1-8 Camlock MT#7 Spindle - D. Chuck Guard w/Safety Switch - **E.** Follow Rest - **F.** 4-Way Tool Post - **G.** Halogen Work Lamp - **H.** Steady Rest - I. Coolant Nozzle & Valve - J. Fagor DRO Control Panel - **K.** Tailstock w/MT#5 Quill - **L.** Rod Support (SB1047PF, -48PF, -58F only) - M. Leadscrew - N. Feed Rod - **O.** Spindle Rod - P. Chip Drawer - Q. Safety Foot Brake - **R.** Carriage - **S.** Micrometer Stop - T. Headstock Spindle Lever ### **AWARNING** Serious personal injury could occur if you connect the machine to power before completing the setup process. DO NOT connect power until instructed to do so later in this manual. # **A**WARNING Untrained users have an increased risk of seriously injuring themselves with this machine. Do not operate this machine until you have understood this entire manual and received proper training. # Controls & Components Refer to **Figures 2–9** and the following descriptions to become familiar with the features and basic controls of this lathe. This knowledge will be necessary to properly set up the lathe for the test run and spindle break-in. ### **AWARNING** To reduce the risk of serious injury when using this machine, read and understand this entire manual before beginning any lathe operations. #### **Master Power Switch** The rotary switch shown in **Figure 2** toggles incoming power ON and OFF to the lathe controls. It also prevents the electrical cabinet door from being opened when the switch is *ON*. Figure 2. Location of the master power switch. ### **NOTICE** Turning the master power switch to OFF is not a safe alternative to completely disconnecting the machine from power when wiring, servicing, or making repairs. #### **Headstock** Figure 3. Headstock controls. - **A.** Quick Change Gearbox Levers: Controls the leadscrew and feed rod speed for threading and feed operations. - **B.** Headstock Feed Direction Lever: Controls the direction that the leadscrew and feed rod rotate. - **C. Gearbox Range Lever:** Shifts the quick-change gearbox into low range, neutral, or high range. - **D. Spindle Speed Lever:** Selects one of the four spindle speeds within the available range. - **E.** Spindle Speed Range Lever: Selects one of four spindle speed ranges. - **F.** Threading and Feed Charts: Displays the necessary configurations of the gearbox levers and end gears for different threading or feeding options. #### **Control Panel** Figure 4. Control panel. - **G. Power Light:** Illuminates when lathe controls are receiving power. - **H. Coolant Pump OFF & ON Buttons:** Control the coolant pump motor. - I. Spindle Motor OFF & ON Buttons: Controls the spindle motor. - J. STOP Button: Stops all machine functions. Twist clockwise to reset. ### **Carriage** Figure 5. Carriage controls. - **K. Carriage Handwheel:** Moves the carriage along the bed. Can be disengaged during power feed operations to prevent an entanglement hazard. - **L. Cross Slide Handwheel:** Moves the cross slide toward and away from the workpiece. - **M.** Compound Rest Handwheel: Moves the tool toward and away from the workpiece at the preset angle of the compound rest. - **N. 4-Way Tool Post:** Mounts up to four cutting tools at once that can be individually indexed to the workpiece. - **O.** Coolant Flow Control Lever: Controls the flow of coolant from the nozzle. - **P. One-Shot Oiler:** Draws oil from the apron reservoir to lubricate the carriage ways through various oil ports. - **Q. Half Nut Lever:** Engages/disengages the half nut for threading operations. - **R. Carriage Lock:** Secures the carriage in place when the carriage should not move. - **S.** Thread Dial and Chart: Dial indicates when to engage the half nut during threading operations. Chart indicates on which thread dial reading to engage the half nut for specific inch thread pitches. - **T. Spindle Lever:** Starts, stops and reverses direction of spindle rotation. - **U.** Feed ON/OFF Lever: Engages/disengages power feed. - V. Apron Feed Direction Knob: Changes direction of carriage or the cross slide feed without having to stop the lathe and move the headstock feed direction lever. - **W. Feed Selection Knob:** Selects the carriage or cross slide for power feed. INTRODUCTION ### **Carriage Feed Clutch Knob** Figure 6. Adjustable carriage feed clutch knob. X. Carriage Feed Clutch Knob: Adjusts how easily the carriage clutch will disengage automatic feeding when the carriage contacts a feed stop or in the event of a crash. Tightening this knob all the way disables the carriage clutch completely. #### **Tailstock** Figure 7. Tailstock controls. - Quill: The quill has an MT#5 taper, metric and inch scale, and a drift slot to remove tight-fitting tooling. - **Z.** Quill Lock Lever: Secures the quill in position. - **AA. Tailstock Lock Lever:** Secures the tailstock in position along the bedway. - **AB. Tailstock Handwheel:** Moves the quill toward or away from the spindle. The graduated dial has 0.001" increments with one full revolution equaling 0.200" of quill travel. - **AC. Tailstock Gib Screws:** Adjust the tapered gib to control tailstock offset accuracy. - **AD. Tailstock Offset Screws:** Adjust the tailstock offset left or right from the spindle centerline. Figure 8. Tailstock controls. - **AE. Tailstock Clamp Bolt:** Adjusts the clamping pressure applied by the tailstock lock lever. - **AF. Offset Scale:** Indicates the relative distance of tailstock offset from the spindle centerline. - **AG Offset Lock Bolt:** Clamps together the upper and lower halves of the tailstock after the offset is adjusted. - **AH. Tailstock Stop Pin:** Prevents the tailstock from sliding off of the ways. ### **Safety Foot Brake** This lathe is equipped with a foot brake (see **Figure 9**) to quickly stop the spindle instead of allowing it to coast to a stop on its own. Pressing the foot brake disengages the spindle clutch from the motor drive train inside the headstock. After the foot brake is used, the spindle lever is used to re-start spindle rotation. Figure 9. Foot brake and spindle levers. # **Product Specifications** P.O. Box 2027, Bellingham, WA 98227 U.S.A. PHONE: (360) 734-1540 • © South Bend Lathe Co. www.southbendlathe.com # MODEL SB1046PF, SB1047PF, SB1048PF 21" TURN-NADO® GEARHEAD LATHE w/DRO | Model Number | SB1046PF | SB1047PF | SB1048PF | |--|---------------------------------------|--------------------|--------------------| | Product Dimensions | | | | | Weight | 5830 lbs. | 6600 lbs. | 8140 lbs. | | Width (side-to-side)/Depth
(front-to-back)/Height | 110½" x 27" x 54¾" | 130¼" x 27" x 54¾" | 169¾" x 27" x 54¾" | | Foot Print (Width/Depth) | 122½" x 71¾" | 141¾" x 71¾" | 182" x 71¾" | | Shipping Dimensions | | | | | Туре | Wood Slat Crate | | | | Weight | 6182 lbs. | 7040 lbs. | 8712 lbs. | | Width (side-to-side)/Depth
(front-to-back)/Height | 121" x 45" x 69" | 141" x 45" x 69" | 183" x 45" x 69" | | Electrical | | | | | Power Requirement | 440V, 3-Phase, 60Hz | | | | Full-Load Current Rating | 19.23A | | | | Minimum Circuit Size | 30A | | | | Switch | Magnetic with Thermal Protection | | | | Switch Voltage | 440V | | | | Plug Included | No | | | | Recommended Connection Type | Hardwire to Locking Disconnect Switch | | | | Model Number | SB1046PF | SB1047PF | SB1048PF | | |--------------------------|-----------------------|-------------------------------|----------|--| | Main Motor | | | | | | Туре | TEFC Induction | | | | | Horsepower | | 15 HP | | | | Voltage | | 440V | | | | Phase | | 3-Phase | | | | Amps | | 19A | | | | Speed | | 1720 RPM | | | | Cycle | | 60 Hz | | | | Power Transfer | | V-Belt & Gear | | | | Bearings | | Shielded & Permanently Sealed | d | | | Coolant Motor | | | | | | Туре | | TEFC Induction | | | | Horsepower | | ½ HP | | | | Voltage | | 440V | | | | Phase | | 3-Phase | | | | Amps | | 0.23A | | | | Speed | 3450 RPM | | | | | Cycle | 60 Hz | | | | | Power Transfer | Direct Drive | | | | | Bearings | | Shielded & Permanently Sealed | l | | | Operation Information | | | | | | Swing Over Bed | | 21 in. | | | | Distance Between Centers | 60 in. | 80 in. | 120 in. | | | Swing Over Cross Slide | 14.01 in. | | | | | Swing Over Saddle | 21 in. | | | | | Swing Over Gap | 31.10 in. | | | | | Maximum Tool Bit Size | 1 in. | | | | | Compound Travel | 5.39 in. | | | | | Carriage Travel | 59 in. 79 in. 119 in. | | | | | Cross Slide Travel | 11 in. | | | | | Model Number | SB1046PF | SB1047PF | SB1048PF | |------------------------------|-----------------------|------------------------|------------| | Headstock Information | | | | | Spindle Bore | 3.15 in. | | | | Spindle Taper | | MT#7 | | | Number of Spindle Speeds | | 16 | | | Range of Spindle Speeds | | 20–1600 RPM | | | Spindle Type | | D1-8 Camlock | | | Spindle Bearings | | Tapered Roller | | | Tailstock Information | | | | | Tailstock Quill Travel | | 6.5 in. | | | Tailstock Taper | | MT#5 | | | Tailstock Barrel Diameter | | 3 in. | | | Threading Information | | | | | Number of Longitudinal Feeds | | 15 | | | Range of Longitudinal Feeds | | 0.0015–0.0400 in./rev. | | | Number of Cross Feeds | | 15 | | | Range of Cross Feeds | | 0.00075–0.0200 in./rev | | | Number of Inch Threads | 38 | | | | Range of Inch Threads | 2–72 TPI | | | | Number of Metric Threads | 40 | | | | Range of
Metric Threads | 0.4–14 mm | | | | Number of Modular Pitches | 18 | | | | Range of Modular Pitches | 0.3–3.5 MP | | | | Number of Diametral Pitches | 21 | | | | Range of Diametral Pitches | | 8–44 DP | | | Dimensions | | | | | Bed Width | | 13.58 in. | | | Leadscrew Diameter | 1% in. | | | | Leadscrew TPI | 4 TPI | | | | Leadscrew Length | 85.39 in. | 105.08 in. | 145.43 in. | | Steady Rest Capacity | ⁵ %-7½ in. | | | | Follow Rest Capacity | 5%−5⅓ in. | | | | Faceplate Size | 14 in. | | | | Floor to Center Height | 46.65 in. | | | | Height With Leveling Jacks | 47.9 in. | | | ### INTRODUCTION | Model Number | SB1046PF | SB1047PF | SB1048PF | | |------------------------|-------------|--|------------|--| | Construction | | | | | | Headstock | | Cast Iron | | | | Headstock Gears | | Flame-Hardened Steel | | | | Bed | Meehanite | Castings with Induction-Hard | lened Ways | | | Stand | | Cast Iron | | | | Paint | | Urethane | | | | Other | | | | | | Country of Origin | Taiwan (Son | Taiwan (Some Components Made in USA & Germany) | | | | Warranty | | 1 Year | | | | Serial Number Location | I | ID Label on Front of Headstock | | | | Assembly Time | | Approximately 1 Hour | | | | Sound Rating at Idle | 76 dB | | | | # **Product Specifications** P.O. Box 2027, Bellingham, WA 98227 U.S.A. PHONE: (360) 734-1540 • © South Bend Lathe Co. www.southbendlathe.com # MODEL SB1056F, SB1057F, SB1058F 18" TURN-NADO® GEARHEAD LATHE w/DRO | Model Number | SB1056F | SB1057F | SB1058F | |--|---------------------------------------|--|---| | Product Dimensions | | | | | Weight | 4400 lbs. | 5170 lbs. | 5940 lbs. | | Width (side-to-side)/Depth (front-to-back)/Height | 90¾" x 27" x 54¾" | $110\frac{1}{2}$ " x 27" x $54\frac{3}{4}$ " | $130\frac{1}{4}$ " x 27 " x $54\frac{3}{4}$ " | | Foot Print (Width/Depth) | 102½" x 71¾" | 122¼" x 71¾" | 141¾" x 71¾" | | Shipping Dimensions | | | | | Туре | Wood Slat Crate | | | | Weight | 4708 lbs. | 5522 lbs. | 6380 lbs. | | Width (side-to-side)/Depth
(front-to-back)/Height | 100" x 45" x 69" | 121" x 45" x 69" | 141" x 45" x 69" | | Electrical | | | | | Power Requirement | 440V, 3-Phase, 60Hz | | | | Full-Load Current Rating | 19.23A | | | | Minimum Circuit Size | 30A | | | | Switch | Magnetic with Thermal Protection | | | | Switch Voltage | 440V | | | | Plug Included | No | | | | Recommended Connection Type | Hardwire to Locking Disconnect Switch | | | | Model Number | SB1056F | SB1057F | SB1058F | | |--------------------------|--------------|-------------------------------|---------|--| | Main Motor | | | | | | Туре | | TEFC Induction | | | | Horsepower | | 15 HP | | | | Voltage | | 440V | | | | Phase | | 3-Phase | | | | Amps | | 19A | | | | Speed | | 1720 RPM | | | | Cycle | | 60 Hz | | | | Power Transfer | | V-Belt & Gear | | | | Bearings | | Shielded & Permanently Sealed | | | | Coolant Motor | | | | | | Type | | TEFC Induction | | | | Horsepower | | ½ HP | | | | Voltage | | 440V | | | | Phase | | 3-Phase | | | | Amps | 0.23A | | | | | Speed | 3450 RPM | | | | | Cycle | 60 Hz | | | | | Power Transfer | Direct Drive | | | | | Bearings | | Shielded & Permanently Sealed | | | | Operation Information | | | | | | Swing Over Bed | | 18.11 in. | | | | Distance Between Centers | 40 in. | 60 in. | 80 in. | | | Swing Over Cross Slide | 11.02 in | | | | | Swing Over Saddle | 18 in. | | | | | Swing Over Gap | 27.95 in. | | | | | Maximum Tool Bit Size | 1 in. | | | | | Compound Travel | 5.39 in. | | | | | Carriage Travel | 39 in. | 59 in. | 79 in. | | | Cross Slide Travel | 11 in. | | | | | Model Number | SB1056F | SB1057F | SB1058F | | |------------------------------|------------|------------------------|------------|--| | Headstock Information | | | | | | Spindle Bore | 3.15 in. | | | | | Spindle Taper | | MT#7 | | | | Number of Spindle Speeds | | 16 | | | | Range of Spindle Speeds | | 20–1600 RPM | | | | Spindle Type | | D1-8 Camlock | | | | Spindle Bearings | | Tapered Roller | | | | Tailstock Information | | | | | | Tailstock Quill Travel | | 6.5 in. | | | | Tailstock Taper | | MT#5 | | | | Tailstock Barrel Diameter | | 3 in. | | | | Threading Information | | | | | | Number of Longitudinal Feeds | | 15 | | | | Range of Longitudinal Feeds | | 0.0015–0.0400 in./rev. | | | | Number of Cross Feeds | | 15 | | | | Range of Cross Feeds | | 0.00075–0.0200 in./rev | | | | Number of Inch Threads | | 38 | | | | Range of Inch Threads | 2–72 TPI | | | | | Number of Metric Threads | 40 | | | | | Range of Metric Threads | 0.4–14 mm | | | | | Number of Modular Pitches | 18 | | | | | Range of Modular Pitches | 0.3–3.5 MP | | | | | Number of Diametral Pitches | | 21 | | | | Range of Diametral Pitches | | 8–44 DP | | | | Dimensions | | | | | | Bed Width | | 13.58 in. | | | | Leadscrew Diameter | 1% in. | | | | | Leadscrew TPI | 4 TPI | | | | | Leadscrew Length | 65.71 in. | 85.39 in. | 105.08 in. | | | Steady Rest Capacity | 5%−7½ in. | | | | | Follow Rest Capacity | 5%−51% in. | | | | | Faceplate Size | 14 in. | | | | | Feed Rod Diameter | 0.93 in | | | | | Floor to Center Height | 45.08 in. | | | | | Height With Leveling Jacks | 46.25 in | | | | | Model Number | SB1056F | SB1057F | SB1058F | | |------------------------|--|---|---------|--| | Construction | | | | | | Headstock | | Cast Iron | | | | Headstock Gears | | Flame-Hardened Steel | | | | Bed | Meehanite | Meehanite Castings with Induction-Hardened Ways | | | | Stand | | Cast Iron | | | | Paint | Urethane | | | | | Other | | | | | | Country of Origin | Taiwan (Some Components Made in USA & Germany) | | | | | Warranty | 1 Year | | | | | Serial Number Location | ID Label on Front of Headstock | | | | | Assembly Time | | Approximately 1 Hour | | | | Sound Rating at Idle | | 76 dB | | | ### **Understanding Risks of Machinery** Operating all machinery and machining equipment can be dangerous or relatively safe depending on how it is installed and maintained, and the operator's experience, common sense, risk awareness, working conditions, and use of personal protective equipment (safety glasses, respirators, etc.). The owner of this machinery or equipment is ultimately responsible for its safe use. This responsibility includes proper installation in a safe environment, personnel training and usage authorization, regular inspection and maintenance, manual availability and comprehension, application of safety devices, integrity of cutting tools or accessories, and the usage of approved personal protective equipment by all operators and bystanders. The manufacturer of this machinery or equipment will not be held liable for injury or property damage from negligence, improper training, machine modifications, or misuse. Failure to read, understand, and follow the manual and safety labels may result in serious personal injury, including amputation, broken bones, electrocution, or death. The signals used in this manual to identify hazard levels are defined as follows: Death or catastrophic harm WILL occur. **NOTICE** Machine or property damage may occur. # **Basic Machine Safety** Owner's Manual: All machinery and machining equipment presents serious injury hazards to untrained users. To reduce the risk of injury, anyone who uses THIS item MUST read and understand this entire manual before starting. **Personal Protective Equipment:** Operating or servicing this item may expose the user to flying debris, dust, smoke, dangerous chemicals, or loud noises. These hazards can result in eye injury, blindness, longterm respiratory damage, poisoning, cancer, reproductive harm or hearing loss. Reduce your risks from these hazards by wearing approved eye protection, respirator, gloves, or hearing protection. **Trained/Supervised Operators Only:** Untrained users can seriously injure themselves or bystanders. Only allow trained and properly supervised personnel to operate this item. Make sure safe operation instructions are clearly understood. If electrically powered, use padlocks and master switches, and remove start switch keys to prevent unauthorized use or accidental starting. **Guards/Covers:** Accidental contact with moving parts during operation may cause severe entanglement, impact, cutting, or crushing injuries. Reduce this risk by keeping any included guards/covers/doors installed, fully functional, and positioned for maximum protection. - **Entanglement:** Loose clothing, gloves, neckties, jewelry or long hair may get caught in moving parts, causing entanglement, amputation, crushing, or strangulation. Reduce this risk by removing/securing these items so they cannot contact moving parts. - Mental Alertness: Operating this item with reduced mental alertness increases the risk of accidental injury. Do not let a temporary influence or distraction lead to a permanent disability! Never operate when under the influence of drugs/alcohol, when tired, or otherwise distracted. - **Safe Environment:** Operating electrically powered equipment in a wet environment may result in electrocution; operating near highly flammable materials may result in a fire or explosion. Only operate this item in a dry location that is free from flammable materials. - equipment, improper connections to the power source may result in electrocution or fire. Always adhere to all electrical requirements and applicable codes when connecting to the power source. Have all work inspected by a qualified electrician to minimize risk. - **Disconnect Power:** Adjusting or servicing electrically powered equipment while it is connected to the power source greatly increases the risk of injury from accidental startup. Always disconnect power BEFORE any service or adjustments, including changing blades or other tooling. - Secure
Workpiece/Tooling: Loose workpieces, cutting tools, or rotating spindles can become dangerous projectiles if not secured or if they hit another object during operation. Reduce the risk of this hazard by verifying that all fastening devices are properly secured and items attached to spindles have enough clearance to safely rotate. - Chuck Keys or Adjusting Tools: Tools used to adjust spindles, chucks, or any moving/rotating parts will become dangerous projectiles if left in place when the machine is started. Reduce this risk by developing the habit of always removing these tools immediately after using them. - **Work Area:** Clutter and dark shadows increase the risks of accidental injury. Only operate this item in a clean, non-glaring, and well-lighted work area. - Properly Functioning Equipment: Poorly maintained, damaged, or malfunctioning equipment has higher risks of causing serious personal injury compared to those that are properly maintained. To reduce this risk, always maintain this item to the highest standards and promptly repair/service a damaged or malfunctioning component. Always follow the maintenance instructions included in this documentation. - **Unattended Operation:** Electrically powered equipment that is left unattended while running cannot be controlled and is dangerous to bystanders. Always turn the power *OFF* before walking away. - Health Hazards: Certain cutting fluids and lubricants, or dust/smoke created when cutting, may contain chemicals known to the State of California to cause cancer, respiratory problems, birth defects, or other reproductive harm. Minimize exposure to these chemicals by wearing approved personal protective equipment and operating in a well ventilated area. - operations: Attempting difficult operations with which you are unfamiliar increases the risk of injury. If you experience difficulties performing the intended operation, STOP! Seek an alternative method to accomplish the same task, ask a qualified expert how the operation should be performed, or contact our Technical Support for assistance. # **Additional Metal Lathe Safety** **Speed Rates.** Operating the lathe at the wrong speed can cause nearby parts to break or the workpiece to come loose, which will result in dangerous projectiles that could cause severe impact injuries. Large or non-concentric workpieces must be turned at slow speeds. Always use the appropriate feed and speed rates. **Chuck Key Safety.** A chuck key left in the chuck can become a deadly projectile when the spindle is started. Always remove the chuck key after using it. Develop a habit of not taking your hand off of a chuck key unless it is away from the machine. **Safe Clearances.** Workpieces that crash into other components on the lathe may throw dangerous projectiles in all directions, leading to impact injury and damaged equipment. Before starting the spindle, make sure the workpiece has adequate clearance by hand-rotating it through its entire range of motion. Also, check the tool and tool post clearance, chuck clearance, and saddle clearance. Long Stock Safety. Long stock can whip violently if not properly supported, causing serious impact injury and damage to the lathe. Reduce this risk by supporting any stock that extends from the chuck/headstock more than three times its own diameter. Always turn long stock at slow speeds. **Securing Workpiece.** An improperly secured workpiece can fly off the lathe spindle with deadly force, which can result in a severe impact injury. Make sure the workpiece is properly secured in the chuck or faceplate before starting the lathe. **Chucks.** Chucks are very heavy and difficult to grasp, which can lead to crushed fingers or hands if mishandled. Get assistance when handling chucks to reduce this risk. Protect your hands and the precision-ground ways by using a chuck cradle or piece of plywood over the ways of the lathe when servicing chucks. Use lifting devices when necessary. **Clearing Chips.** Metal chips can easily cut bare skin—even through a piece of cloth. Avoid clearing chips by hand or with a rag. Use a brush or vacuum to clear metal chips. Stopping Spindle by Hand. Stopping the spindle by putting your hand on the workpiece or chuck creates an extreme risk of entanglement, impact, crushing, friction, or cutting hazards. Never attempt to slow or stop the lathe spindle with your hand. Allow the spindle to come to a stop on its own or use the brake. Crashes. Aggressively driving the cutting tool or other lathe components into the chuck may cause an explosion of metal fragments, which can result in severe impact injuries and major damage to the lathe. Reduce this risk by releasing automatic feeds after use, not leaving lathe unattended, and checking clearances before starting the lathe. Make sure no part of the tool, tool holder, compound rest, cross slide, or carriage will contact the chuck during operation. Coolant Safety. Coolant is a very poisonous biohazard that can cause personal injury from skin contact alone. Incorrectly positioned coolant nozzles can splash on the operator or the floor, resulting in an exposure or slipping hazard. To decrease your risk, change coolant regularly and position the nozzle where it will not splash or end up on the floor. **Tool Selection.** Cutting with an incorrect or dull tool increases the risk of accidental injury due to the extra force required for the operation, which increases the risk of breaking or dislodging components that can cause small shards of metal to become dangerous projectiles. Always select the right cutter for the job and make sure it is sharp. A correct, sharp tool decreases strain and provides a better finish. ### **Additional Chuck Safety** **Entanglement.** Entanglement with a rotating chuck can lead to death, amputation, broken bones, or other serious injury. Never attempt to slow or stop the lathe chuck by hand, and always roll up long sleeves, tie back long hair, and remove any jewelry or loose apparel BEFORE operating. **Chuck Speed Rating.** Excessive spindle speeds greatly increase the risk of the workpiece or chuck being thrown from the machine with deadly force. Never use spindle speeds faster than the chuck RPM rating or the safe limits of your workpiece. **Using Correct Equipment.** Many workpieces can only be safely turned in a lathe if additional support equipment, such as a tailstock or steady rest, is used. If the operation is too hazardous to be completed with the lathe or existing equipment, the operator must have enough experience to know when to use a different machine or find a safer way. Trained Operators Only. Using a chuck incorrectly can result in workpieces coming loose at high speeds and striking the operator or bystanders with deadly force. To reduce the risk of this hazard, read and understand this document and seek additional training from an experienced chuck user before using a chuck. **Chuck Capacity.** Avoid exceeding the capacity of the chuck by clamping an oversized workpiece. If the workpiece is too large to safely clamp with the chuck, use a faceplate or a larger chuck if possible. Otherwise, the workpiece could be thrown from the lathe during operation, resulting in serious impact injury or death. Clamping Force. Inadequate clamping force can lead to the workpiece being thrown from the chuck and striking the operator or bystanders. Maximum clamping force is achieved when the chuck is properly maintained and lubricated, all jaws are fully engaged with the workpiece, and the maximum chuck clamping diameter is not exceeded. Proper Maintenance. All chucks must be properly maintained and lubricated to achieve maximum clamping force and withstand the rigors of centrifugal force. To reduce the risk of a thrown workpiece, follow all maintenance intervals and instructions in this document. **Disconnect Power.** Serious entanglement or impact injuries could occur if the lathe is started while you are adjusting, servicing, or installing the chuck. Always disconnect the lathe from power before performing these procedures. ### **Preparation Overview** The purpose of the preparation section is to help you prepare your machine for operation. The list below outlines this basic process. Specific steps for each of these points will be covered in detail later in this section. #### The typical preparation process is as follows: - **1.** Unpack the lathe and inventory the contents of the box/crate. - **2.** Clean the lathe and its components. - **3.** Identify an acceptable location for the lathe and move it to that location. - **4.** Level the lathe and either bolt it to the floor or place it on mounts. - **5.** Assemble the loose components and make any necessary adjustments or inspections to ensure the lathe is ready for operation. - **6.** Check/lubricate the lathe. - **7.** Connect the lathe to the power source. - **8.** Test run the lathe to make sure it functions properly. - **9.** Perform the spindle break-in procedure to prepare the lathe for operation. # **Things You'll Need** To complete the preparation process, you will need the following items: #### For Lifting and Moving - A forklift or other power lifting device rated for at least 25% more than the shipping weight of the lathe (see **Product Specifications** beginning on **Page 9**) - Lifting straps, each rated for at least 25% more than the shipping weight of the lathe - Guide rods for steading the load when lifting - Two other people for assistance when moving machine - Hardwood blocking (see **Page 27**) #### **For Power Connection** - A power source that meets the minimum circuit requirements for this machine (review the **Power Supply Requirements** section on the next page for details) - An electrician or qualified service personnel to ensure a safe and code-compliant connection to the power source #### For Cleaning & Assembly - Cotton rags - Mineral spirits - Quality metal protectant oil - Safety glasses - Wrench or socket 21mm - Wrench
or socket 19mm - Floor mounting hardware as needed - Precision level - Standard screwdriver #2 # Power Supply Requirements ### **Availability** Before installing the machine, consider the availability and proximity of the required power supply circuit. If an existing circuit does not meet the requirements for this machine, a new circuit must be installed. To minimize the risk of electrocution, fire, or equipment damage, installation work and electrical wiring must be done by an electrician or qualified service personnel in accordance with all applicable codes. # **AWARNING** Serious injury could occur if you connect the machine to power before completing the setup process. DO NOT connect to power until instructed later in this manual. ### **Full-Load Current Rating** The full-load current rating is the amperage a machine draws at 100% of the rated output power. On machines with multiple motors, this is the amperage drawn by the largest motor or sum of all motors and electrical devices that might operate at one time during normal operations. | 19.23 Amps | |------------| | 19.23 Amps | | | For your own safety and protection of property, consult an electrician if you are unsure about wiring practices or applicable electrical codes. The full-load current is not the maximum amount of amps that the machine will draw. If the machine is overloaded, it will draw additional amps beyond the full-load rating. If the machine is overloaded for a sufficient length of time, damage, overheating, or fire may result—especially if connected to an undersized circuit. To reduce the risk of these hazards, avoid overloading the machine during operation and make sure it is connected to a power supply circuit that meets the requirements in the following section. ### **Circuit Requirements** This machine is prewired to operate on a 440V power supply circuit that has a verified ground and meets the following requirements: | Nominal Voltage | 440V/480V | |--------------------------|----------------| | Cycle | 60 Hz | | Phase | 3-Phase | | Circuit Rating | 30 Amps | | Connection Hardwire with | Locking Switch | A power supply circuit includes all electrical equipment between the main breaker box or fuse panel in your building and the incoming power connections inside the machine. This circuit must be safely sized to handle the full-load current that may be drawn from the machine for an extended period of time. (If this machine is **Note:** The circuit requirements in this manual are for a dedicated circuit—where only one machine will be running at a time. If this machine will be connected to a shared circuit where multiple machines will be running at the same time, consult a qualified electrician to ensure the circuit is properly sized. ### **Grounding Requirements** This machine must be grounded! In the event of certain types of malfunctions or breakdowns, grounding provides a path of least resistance for electric current in order to reduce the risk of electric shock. Improper connection of the equipment-grounding wire can result in a risk of electric shock. The wire with green insulation (with or without yellow stripes) is the equipment-grounding wire. If repair or replacement of the power cord is necessary, do not connect the equipment-grounding wire to a live (current carrying) terminal. Check with a qualified electrician or service personnel if you do not understand these grounding requirements, or if you are in doubt about whether the machine is properly grounded. If you ever notice that a cord is damaged or worn, disconnect it from power, and immediately replace it with a new one. ### **AWARNING** Electrocution or fire may occur if machine is not correctly grounded and attached to the power supply. Use an electrician or qualified service personnel to ensure a safe power connection. #### 440V Operation As specified in the **Circuit Requirements** section on the previous page, these machines must be hardwired to the power source, using a locking switch (see **Figure 10**). These machines must also be connected to a grounded metal permanent wiring system; or to a system with an equipment-grounding conductor. Due to the complexity and high voltage involved, this type of installation MUST be done by an electrician or qualified service personnel. Figure 10. Typical hardwire setup with a locking disconnect switch. # **Unpacking** This item was carefully packaged to prevent damage during transport. If you discover any damage, please immediately call Customer Service at (360) 734-1540 for advice. You may need to file a freight claim, so save the containers and all packing materials for possible inspection by the carrier or its agent. ### **Inventory** | IVIA | | City | |------|--|------| | A. | Steady Rest Assembly (Installed) | 1 | | B. | 14" Faceplate w/D1-8 Camlock Stud Set. | 1 | | C. | 3-Jaw Chuck Key (Clamped on Lathe) | 1 | | D. | Model SB1232 14" 4-Jaw Chuck | | | | w/Combo Jaws | 1 | | E. | 4-Jaw Chuck Key | | | F. | Tool Post T-Wrench (Clamped on Lathe). | | | G. | Follow Rest Assembly (Installed) | | | Tod | ol Box Inventory (Figure 12) | Qty | | H. | Tool Box | _ | | i. | Open End Wrench 22/24mm | | | j. | Open End Wrench 14/17mm | | | K. | Open End Wrench 10/12mm | | | L. | Combination Wrench 27mm | | | М. | Phillips Screwdriver #2 | | | N. | Standard Screwdriver #2 | | | 0. | Carbide-Tipped Dead Center MT#5 | | | P. | Dead Center MT#5 | | | a. | Tapered Spindle Sleeve MT#7-#5 | | | R. | Carriage Handwheel Handle | | | S. | Cross Slide Handwheel Handle | | | T. | Hex Wrench Set 1.5-10mm | | | Ü. | Hex Wrench 10mm | | | V. | Cast Iron Feet | | | •• | | | | Ins | stalled & Not Shown | Qty | | • | SB1312 12" 3-Jaw Chuck | | | • | SB1404 12½" Back Plate for SB1312 | 1 | **Note:** Some inventory components or additional documentation may be shipped inside of the lathe electrical cabinet. These items MUST be removed before connecting the lathe to the power source. Figure 11. Main inventory. Figure 12. Toolbox inventory. ### **Cleaning & Protecting** The unpainted surfaces are coated at the factory with a heavy-duty rust preventative that prevents corrosion during shipment and storage. The benefit of this rust preventative is that it works very well. The downside is that it can be time-consuming to thoroughly remove. Be patient and do a careful job when cleaning and removing the rust preventative. The time you spend doing this will reward you with smooth-sliding parts and a better appreciation for the proper care of the unpainted surfaces. Although there are many ways to successfully remove the rust preventative, the following process works well in most situations. #### Before cleaning, gather the following: - Disposable rags - Cleaner/degreaser (certain citrus-based degreasers work extremely well and they have non-toxic fumes) - Safety glasses & disposable gloves **Note:** Automotive degreasers, mineral spirits, or WD•40 can be used to remove rust preventative. Before using these products, though, test them on an inconspicuous area of a painted surface to make sure they will not damage it. ### **AWARNING** Gasoline and petroleum products have low flash points and can explode or cause fire if used for cleaning. Avoid using these products to remove rust preventative. # **A**CAUTION Many cleaning solvents are toxic if inhaled. Minimize your risk by only using these products in a well ventilated area. ### **NOTICE** Avoid chlorine-based solvents, such as acetone or brake parts cleaner that may damage painted surfaces. Always follow the manufacturer's instructions when using any type of cleaning product. #### **Basic steps for removing rust preventative:** - **1.** Put on safety glasses and disposable gloves. - **2.** Coat all surfaces that have rust preventative with a liberal amount of your cleaner or degreaser and let them soak for a few minutes. - **3.** Wipe off the surfaces. If your cleaner or degreaser is effective, the rust preventative will wipe off easily. **Note:** To clean off thick coats of rust preventative on flat surfaces, such as beds or tables, use a PLASTIC paint scraper to scrape off the majority of the coating before wiping it off with your rag. (Do not use a metal scraper or it may scratch the surface.) **4.** Repeat **Steps 2–3** as necessary until clean, then coat all unpainted surfaces with a quality metal protectant or light oil to prevent rust. ### NOTICE Remove the end gear cover and end gears, and use a stiff brush with mineral spirits to clean the rust preventative from the gears and shafts. DO NOT get any cleaner or rust preventative on the V-belts, as it could damage them or make them slip during operations. If the belts do become contaminated, replace them. ### Location ### **Physical Environment** The physical environment where your machine is operated is important for safe operation and longevity of parts. For best results, operate this machine in a dry environment that is free from excessive moisture, hazardous or flammable chemicals, airborne abrasives, or extreme conditions. Extreme conditions for this type of machinery are generally those where the ambient temperature is outside the range of 41°–104°F; the relative humidity is outside the range of 20–95% (non-condensing); or the environment is subject to vibration, shocks, or bumps. #### **Electrical Installation** Place this machine near an existing power source that meets the minimum circuit requirements. Make sure all power cords are protected from traffic, material handling, moisture, chemicals, or other hazards. Leave access to disconnect the power source or engage a lockout/tagout device. ### Lighting Lighting around the machine must be adequate enough that operations can be performed safely. Shadows, glare, or strobe effects that may distract or impede the operator must be ### Weight Load Refer to the **Machine Specifications** for the weight of your machine. Make sure that the surface upon which the
machine is placed will bear the weight of the machine, additional equipment that may be installed on the machine, and the heaviest workpiece that will be used. Additionally, consider the weight of the operator and any dynamic loading that may occur when operating the machine. ### **Space Allocation** Consider the largest size of workpiece that will be processed through this machine and provide enough space around the machine for adequate operator material handling or the installation of auxiliary equipment. With permanent installations, leave enough space around the machine to open or remove doors/covers as required by the maintenance and service described in this manual. Figure 13. Space required for full range of movement. # **Lifting & Moving** This machine and its parts are heavy! Serious personal injury may occur if safe moving methods are not used. To reduce the risk of a lifting or dropping injury, ask others for help, and use power equipment and guide rods. Do not attempt to lift or move this lathe without using the proper lifting equipment (such as forklift or crane) or the necessary assistance from other people. Each piece of lifting equipment must be rated for at least 25% more than the shipping weight of your lathe to support dynamic loads that may be applied while lifting. Refer to **Things You'll Need** on **Page 21** for details. #### To lift and move the lathe: - **1.** Remove the shipping crate top and sides, then remove the small components from the shipping pallet. - **2.** Move the lathe to its prepared location while it is still attached to the shipping pallet. - **3.** Unbolt the lathe from the shipping pallet - **4.** To balance the load for lifting, move the tailstock and carriage to the extreme right end of the bedway, then lock them in place. **Note:** Before attempting to move the carriage, make sure the carriage lock is loose, the half nut is disengaged, and the power feed is disengaged (feed ON/OFF lever). **5.** Position hardwood blocking under each end of the bed as shown in **Figure 14**. This will keep the lifting straps away from the leadscrew, feed rod, and spindle rod to prevent bending them during lifting. **Note:** Fasten a center support between the hardwood blocking to that they will stay spread apart and in place when lifting (see the example in **Figure 15**). Figure 14. Lifting setup to keep straps from bending leadscrew or rods. Figure 15. Example of blocking center support. **6.** Attach the lifting straps to the power lifting equipment (see **Figure 16** for an example). Figure 16. Example of lathe setup for lifting. **7.** At each end of the lathe, have assistants connect guide rods to safely keep the lathe from swaying or tipping during lifting. ### NOTICE When lifting the lathe with straps, the load will be top heavy. Take extra care to keep the load balanced vertically and only lift it far enough to remove the shipping pallet. - **8.** Raise the lathe a couple of inches and check the balance of the load. - If the load is not safely balanced, immediately lower the lathe and resolve the issue before attempting to lift it again. - **9.** Raise the lathe enough to clear the shipping pallet, carefully remove the pallet, then lower the lathe into position. # **Leveling & Mounting** You must level your machine and either use the included foot pads and leveling hardware or bolt and shim your lathe to the floor. Because mounting your lathe to the floor with permanent hardware is an optional step and floor materials may vary, floor mounting hardware is not included. ### Leveling ### **NOTICE** For accurate turning results and to prevent warping the cast iron bed and ways, the lathe bedways MUST be leveled from side-to-side and from front-to-back on both ends. Re-check the bedways 24 hours after installation, two weeks after that, and then annually to make sure they remain level. Leveling machinery helps precision components, such as bedways, remain straight and flat during the lifespan of the machine. Components on a machine that is not level may slowly twist due to the dynamic loads placed on the machine during operation. For best results, use a precision level that is at least 12" long and sensitive enough to show a distinct movement when a 0.003" shim (approximately the thickness of one sheet of standard newspaper) is placed under one end of the level. See the figure below for an example of a high precision level. Figure 17. Example of a precision level. To level the machine, use a precision level to make sure the bedways are level from side-toside and from front-to-back. — If using the included leveling pads (see Figure 18), place them under the six leveling jack bolt locations, then adjust the bolts to level the lathe. Figure 18. Leveling pads and screws. — If using mounting hardware that does not allow for adjustment, level the lathe by placing metal shims between the lathe base and the floor before bolting it down. ### **Bolting to Concrete Floors** Lag screws and anchors, or anchor studs (**below**), are two popular methods for bolting machinery to a concrete floor. We suggest you research the many options and methods for mounting your machine and choose the best one for your specific application. Figure 19. Common types of fasteners for bolting machinery to concrete floors. ### NOTICE Most electrical codes require that machines connected to the power source by fixed conduit MUST be secured to the floor. ### **Assembly** With the exception of the handwheel handles, the lathe is shipped fully assembled. To install the handwheel handles, thread the large handle into the carriage handwheel and the small handle into the cross slide handwheel, as shown in **Figure 20**. Figure 20. Handwheel handles installed. ### **Lubricating Lathe** The headstock, quick-change gearbox, and apron oil reservoirs must have the proper amount of oil in them before the lathe can be operated for the first time. Damage caused to the bearings and gears from running the lathe without oil in the reservoirs will not be covered under warranty. Refer to the **Lubrication** section, beginning on **Page 68**, for details on how to check, add oil, and prime the headstock oil pump. In addition to the reservoirs, we also recommend that you lubricate all other points on the machine at this time. This can be accomplished by following the maintenance schedule on **Page 66**. **Note:** If this lathe was shipped with oil in the reservoirs, do not change that oil until after the test run and spindle break-in procedures. # **Adding Coolant** Add the coolant of your choice now. For detailed instructions on where the coolant tank is located and how to add fluid, refer to **Coolant System Service** on **Page 74**. ### **Power Connection** After you have completed all previous setup instructions and circuit requirements, the machine is ready to be connected to the power supply. Due to the complexity required for planning, bending, and installing the conduit necessary for a code-compliant hardwire setup, an electrician or qualified service personnel MUST perform this type of installation. Hardwire setups typically require power supply wires to be enclosed inside of a solid or flexible conduit, which is securely mounted at both ends with the appropriate conduit fittings. All work must adhere to the required electrical codes. The hardwire setup must include a locking disconnect switch (see **Figure 21**) between the power source and the machine. This switch serves as the means to completely disconnect the machine from power to prevent electrocution from accidental startup during adjustments, maintenance, or service to the machine. Figure 21. Typical hardwire setup with a locking disconnect switch. # **AWARNING** Disconnect power supply! Electrocution could occur if you attempt this procedure with the power wires connected to the power source. The incoming power wires must be disconnected from power before performing this procedure. #### **Connecting Power** - **1.** Make sure the master power switch is turned to the OFF position, then open the electrical cabinet door. - **2.** Refer to **Figure 22** to identify the master power switch and the hole at the bottom left for the incoming power supply. Figure 22. Electrical cabinet. **3.** Connect the incoming hot wires to the master power switch terminals and connect the ground wire to the ground terminal, as illustrated in **Figure 23**. Figure 23. Power connection at master power switch. - **4.** Make sure the wires have enough slack so that they do not bind at the terminals. - **5.** Close and lock the electrical cabinet door. ### NOTICE To avoid unexpected start-up of lathe components, keep the master power switch turned OFF until instructed otherwise in the Test Run. ### **Test Run** After all preparation steps have been completed, the machine and its safety features must be tested to ensure correct operation. If you discover a problem with the operation of the machine or its safety components, shut the machine down, disconnect it from power, and do not operate it further until you have resolved the problem. A **Troubleshooting** section is provided, starting on **Page 88**, to assist you with solutions if a problem occurs or if the lathe does not function as described in this section. If you need additional help after reviewing the troubleshooting section, or you are not confident troubleshooting the machine on your own, contact our Tech Support at (360) 734-1540. #### To test run your machine: Make sure the master power switch (Figure 24) on the rear of the machine is turned *OFF*. Figure 24. Location of the master power switch. - **2.** Read and follow the safety instructions at the beginning of the manual, take all required safety precautions, and make sure all previous preparation steps discussed in this manual have been followed and completed. - **3.** Clear away all tools and objects used during assembly, lubrication, and preparation. **4.** Make sure that
the chuck and jaws, if installed, are secure (refer to **Chuck and Faceplate Mounting** on **Page 37**). **Note:** If a chuck is not installed on the lathe, you do not need to install one for this test. **5.** Push the STOP button on the control panel (see **Figure 25**), and point the coolant nozzle into the chip pan. Figure 25. Control panel. **6.** Move the spindle speed range lever (**Figure 26**) so that the colors of the 210–500 RPM range align with the colors on the stationary plate above the hub, then move the spindle speed lever so that the green arrow on the inner hub aligns with the green bar of the 210 RPM label. Figure 26. Spindle speed set at 210 RPM. **Note:** You may need to rock the spindle back and forth by hand to get the gears to engage when using the lever. **7.** Move the gearbox range lever on the headstock to the neutral (middle) position to disable power feed, as shown in **Figure 27**. Figure 27. Gearbox range lever in neutral. - **8.** Pull up on the half nut and the feed ON/OFF levers (see **Figure 28**), then use the carriage handwheel to move the carriage back and forth to ensure that it is not engaged with the leadscrew or feed rod. - **Note:** Steps 7–8 will ensure that the carriage and cross slide do not unexpectedly move during the following steps. Figure 28. Apron controls for test run. - **9.** To prevent the spindle from rotating when power is applied to the motor, move the spindle lever to the OFF (middle) position (see **Figure 28**). - **10.** Turn the master power switch *ON*, then reset the STOP button by twisting it clockwise until it pops out. The power lamp on the control panel should illuminate. - **11.** Push the spindle motor ON button and wait for the motor to reach full speed. - **12.** Verify that oil is flowing against the headstock sight glass shown in **Figure 29**. Figure 29. Headstock oil sight glass. - If oil flow is not visible in the sight glass, push the STOP button, disconnect the lathe from power, then make sure the oil tank is properly filled (see **Headstock** in the **Lubrication** subsection on **Page 68** for details). - If the oil tank is correctly filled and oil flow is still not visible in the sight glass, disconnect the lathe from power and call Tech Support for help. - **Note:** The spindle clutch is tight when new and may require moderate pressure on the spindle lever to engage it until it is broken in - **13.** Move the spindle lever down to start the spindle rotating counterclockwise (down toward the front of the lathe). - If the spindle rotates in the opposite direction (clockwise), the power supply phase polarity may be incorrect. Refer to Correcting Phase Polarity on Page 92 to resolve this. - **14.** Observe the lathe and listen for any abnormal noises or vibration. The lathe should run smoothly. - **15.** Move the spindle lever to the OFF (middle) position, let the spindle come to a complete stop, then move the lever up to reverse spindle rotation. - **16.** Push the STOP button. The spindle should come to a slow stop. - **17.** With the STOP button pushed in, attempt to start spindle rotation—the spindle should not start. - If the spindle *does* start, the STOP button is not working properly. This safety feature must operate properly before continuing. Turn the master power switch *OFF*, disconnect the lathe from power, then call Tech Support for help. - **18.** Move the spindle lever to the OFF (middle) position, reset the STOP button by twisting it clockwise until it pops out, push the spindle motor ON button, then restart spindle rotation by moving the spindle lever down again. - **19.** Press the foot brake. The spindle should come to a quick stop. - If the foot brake has no effect on the stopping speed of the spindle, push the STOP button to stop the lathe, disconnect it from power, and call Tech Support for help. - **20.** Push the STOP button to prevent an accidental start-up. - **21.** Remove the end gear cover from the left side of the headstock. There is a safety switch that prevents the spindle from starting while this cover is removed. - **22.** Reset the STOP button, push the spindle motor ON button, stand away from all the exposed gears on the side of the headstock, then attempt to start spindle rotation—the spindle should *not* start. - If the spindle *does* start with the end gear cover removed, the safety limit switch is not adjusted or operating correctly. This safety feature must operate properly before continuing. Press the STOP button to turn the lathe *OFF*, disconnect it from power, and call Tech Support for help. - **23.** Push the STOP button in, move the spindle lever to the OFF (middle) position, push the spindle motor OFF button and wait for the V-belts to stop, then replace the end gear cover. - **24.** Reset the STOP button, press the spindle motor ON button, then lift the chuck guard up—this will activate the chuck guard safety switch to prevent spindle rotation. Attempt to start spindle rotation—the spindle should *not* start. - If the spindle *does* start with the chuck guard in the up position, the safety switch is not adjusted or operating correctly. This safety feature must operate properly before continuing. Press the STOP button to turn the lathe *OFF*, disconnect it from power, and call Tech Support for help. - **25.** Move the chuck guard back down into operating position. - **26.** Point the coolant nozzle down into the chip drawer and verify that there is coolant in the reservoir (refer to **Coolant System Service** on **Page 74** for detailed instructions). **27.** Use the coolant pump switch on the control panel to start the pump, then open the valve at the base of the nozzle. Verify that the coolant flows from the nozzle, then close the valve and turn the pump *OFF*. Congratulations! The test run is complete. Perform the following **Spindle Break-In** procedure. # Spindle Break-In Before subjecting the lathe to full loads, it is essential to complete the spindle break-in process as described below. This will ensure the best results and maximum life of the precision components inside the lathe. The break-in procedure must be performed in succession with the **Test Run** procedure described in this manual, because many of the test run steps prepare the lathe controls for the break-in process. **Important:** Do not perform the break-in procedure independently from the **Test Run** section—serious damage could occur to the lathe if the controls are set differently than instructed in that section. # **NOTICE** Do not leave the lathe unattended during the Spindle Break-In procedure. If your attention is needed elsewhere during this procedure, stop the lathe and restart the procedure later from the beginning. #### To perform the spindle break-in: - **1.** Successfully complete the **Test Run** procedure beginning on **Page 32**. - **2.** Using the spindle speed levers to set the spindle speed, run the lathe for ten minutes at each of the following speeds: 50, 150, 500, and 1600 RPM. Note: If necessary, refer to Setting Spindle Speed on Page 54 for detailed instructions. - **3.** Use the foot brake to stop spindle rotation, then reverse spindle rotation with the spindle lever, then run the lathe at 1600 RPM for 10 minutes. - 4. Use the foot brake to stop spindle rotation, then run the lathe at 150 RPM for ten minutes with the gearbox range lever (Figure 27) on the headstock in the L (low) position, and then run the lathe for another ten minutes with the lever in the H (high) position. - 5. While the oil is still warm and any metal particles may still be suspended in the oil, change the headstock and gearbox oil (refer to **Lubrication** beginning on **Page 68** for detailed instructions). - **6.** Check, and if necessary, re-tention the V-belts (refer to **V-Belts** on **Page 80** for detailed instructions). Congratulations! The spindle break-in is complete. # Recommended Adjustments For your convenience, the adjustments listed below have been performed at the factory. However, because of the many variables involved with transporting the machine during shipping, we recommend that you at least verify the following adjustments to ensure the best possible operational results from your new machine. Step-by-step instructions for these adjustments can be found on the pages referenced below. #### Factory adjustments that should be verified: - Tailstock alignment (Page 45). - Compound and cross slide backlash adjustment (**Page 77**). - Gib adjustments (**Page 78**). # **Operation Overview** The purpose of this overview is to provide the novice machine operator with a basic understanding of how the machine is used during operation, so they can more easily understand the controls discussed later in this manual. **Note:** Due to the generic nature of this overview, it is not intended to be an instructional guide for performing actual machine operations. To learn more about specific operations and machining techniques, seek training from people experienced with this type of machine, and do additional research outside of this manual by reading "how-to" books, trade magazines, or websites. # AWARNING To reduce the risk of serious injury when using this machine, read and understand this entire manual before beginning any operations. # WARNING Loose hair, clothing, or jewelry could get caught in machinery and cause serious injury or death. Keep these items away from moving parts at all times to reduce this risk. # **AWARNING** During operation, small metal chips may become airborne, leading to serious eye injury. Wear safety glasses to reduce this risk. # To complete a typical operation, the operator does the following: - 1. Puts on safety glasses, rolls up sleeves, removes jewelry, and secures any clothing, jewelry, or hair that could get entangled in moving parts. - **2.** Examines the workpiece to make sure it is suitable for turning, then securely mounts the workpiece in one of the chucks or on the
faceplate, and removes the chuck key from the chuck. - **3.** Mounts the tooling, aligns it with the workpiece, then backs it away to establish a safe startup clearance. - **4.** Clears all setup tools from the lathe. - **5.** Checks for safe clearances by rotating the workpiece by hand at least one full revolution. - **6.** Moves slides to where they will be used during operation. - **7.** Sets the correct spindle speed for the operation. - **8.** If using power feed, selects the proper feed rate for the operation. - **9.** Turns the master power switch *ON*, resets the STOP button, presses the spindle motor ON button, then verifies there is oil flow visible in the headstock sight glass. - **10.** Uses the spindle lever to start spindle rotation. - **11.** Uses the carriage handwheels or power feed options to move the tooling into the workpiece for operations. - **12.** When finished cutting, moves the spindle lever to the OFF position, presses the foot brake to completely stop the spindle, then removes the workpiece. # Chuck & Faceplate Mounting This lathe is equipped with a D1-type spindle nose. This type of spindle uses camlocks that are adjusted with a chuck key to securely mount a chuck or faceplate with repeatable precision and ease. # **AWARNING** Never use spindle speeds faster than the chuck RPM rating or the safe limits of your workpiece. Excessive spindle speeds greatly increase the risk of the workpiece or chuck being thrown from the machine with deadly force! This lathe ships with the 3-jaw chuck installed. This is a scroll-type chuck where all three jaws move in unison when the chuck key is used. The included 4-jaw chuck features independent jaws, which are used for square or unevenlyshaped stock, and to mount work that needs to be adjusted to near zero total indicated runout. If neither chuck can hold your workpiece, the cast iron faceplate has slots for T-bolts that hold standard or custom clamping hardware. With the correct clamping hardware, this faceplate will hold non-cylindrical parts. # Installation & Removal Devices Because chucks are heavy and often awkward to hold, some kind of lifting, support, or protective device should be used during installation or removal. The weight and size of the chuck will determine the appropriate device to use (refer to the following figure for examples). # WARNING A dropped chuck can cause amputation, serious crushing injuries, or property damage. Always use a lifting, support, or protective device to reduce this risk when installing or removing a chuck. Figure 30. Examples of common devices used during chuck installation and removal. # **Chuck Installation** To ensure accurate work, it is extremely important to make sure the spindle nose and chuck mating surfaces/tapers are clean. Even a small amount of lint or debris can affect accuracy. The chuck is properly installed when all camlocks are tight, the spindle and chuck tapers firmly lock together, and the back of chuck is firmly seated against the face of the spindle all the way around—without any gaps. #### To install the chuck: - 1. DISCONNECT LATHE FROM POWER! - **2.** Use an appropriate lifting, support, or protective device to protect the ways and support the chuck during the installation process. - **3.** Clean and lightly oil the camlock studs, then thoroughly clean the mating surfaces of the spindle and chuck. - **4.** Install the chuck by inserting the camlock studs straight into the spindle cam holes. **Important:** Avoid inserting the studs by pivoting them in from an angle or rotating the spindle. This can damage studs or spindle cam holes. Figure 31. Inserting camlock studs into spindle cam - **5.** Incrementally tighten the camlocks in a criss-cross or star pattern to ensure that the chuck seats evenly against the spindle. - **6.** When the chuck is fully seated and all the camlocks are tight, verify that the cam line is between the two "V" marks on the spindle nose, as shown in the following figure. Figure 32. Cam line positioned between the "V" marks after the camlocks are fully tightened. - If the cam line is NOT between the "V" marks when the camlock is tight, the stud may be installed at the incorrect height. To fix this, adjust the stud height as shown in the following figure. Make sure to re-install the stud cap screw afterward. - If adjusting the stud height does not correct the problem, try swapping stud positions on the chuck. Figure 33. Correcting an improperly installed stud. - **7.** Verify that the chuck fits the spindle properly by checking for any gaps between the mating surfaces. - If there are no gaps, proceed to **Step 8**. - If there is a gap, remove the chuck, reclean the mating surfaces carefully, and re-install. If the problem persists, contact our Tech Support. - **8.** Verify that the chuck/spindle tapers are seated firmly together by removing the chuck, per the **Chuck Removal** instructions, and pay close attention to how easily the tapers release. - If it was necessary to bump the chuck or use a mallet to release the tapers, then they are seating together properly. - If the tapers released easily with little intervention, they are not seated together firmly as required. Remove the chuck, reclean the mating surfaces carefully, and re-install. If the problem persists, contact our Tech Support. # **Registration Marks** Lightly stamp registration marks across the mating seams of chuck components. These marks will help you re-install the chuck in the same position after removal, which ensures consistent chuck balance and turning results, and allows the same camlocks and studs to operate together for consistent locking and unlocking. Figure 34. Registration mark locations. # **Chuck Removal** #### To remove the chuck: **OPERATION** - 1. DISCONNECT LATHE FROM POWER! - **2.** Use an appropriate lifting, support, or protective device to protect the ways and support the chuck (refer to **Installation & Removal Devices** on **Page 37**). - **3.** Loosen the camlocks by turning the key counterclockwise until each of the cam lines are aligned with its corresponding spindle mark (see **Figure 35**). Figure 35. Camlock is fully loosened when the cam line is aligned with the spindle mark. - **Tip:** Camlocks can become very tight. A cheater pipe may be used as a last resort to add leverage when loosening. After loosening, you may need to wiggle the chuck key in the camlock to fully disengage the stud. - **4.** Using a dead blow hammer or other soft mallet, lightly tap around the outer circumference of the chuck body to loosen it from the spindle. - **5.** Remove the chuck from the spindle, using a light rocking motion to carefully slide the studs out of the cam holes. - If the chuck does not immediately come off, rotate it approximately 60° and tap it again. Make sure all the marks on the cams and spindle are in proper alignment for removal. # **Scroll Chuck Clamping** This scroll-type chuck has an internal scroll-gear that moves all jaws in unison when adjusted with the chuck key. This chuck will hold cylindrical parts on-center with the axis of spindle rotation and can be rotated at high speeds if the workpiece is properly clamped and balanced. # Never mix jaw types or positions to accommodate an odd-shaped workpiece. The chuck will spin out of balance and may throw the workpiece! Instead, use an independent jaw chuck or a faceplate. Figure 36. Jaw selection and workpiece holding. # 4-Jaw Chuck Refer to the **Chuck Installation** (see **Page 38**) and **Chuck Removal** (see **Page 39**) instructions to install or remove the 4-jaw chuck. The 4-jaw chuck features independently adjustable hardened steel jaws for holding non-concentric or off-center workpieces. Each jaw can be independently removed from the chuck body and reversed for a wide range of work holding versatility. # **AWARNING** Because of the dynamic forces involved in machining a non-concentric or off-center workpiece, always use a low spindle speed to reduce risk of the workpiece coming loose and being thrown from the lathe, which could cause death or serious personal injury. # **Mounting Workpiece** - 1. DISCONNECT LATHE FROM POWER! - **2.** Place a chuck cradle or plywood on the bedway below the chuck to protect the bedway surfaces. - **3.** Use the chuck key to open each jaw so the workpiece will lay flat against the chuck face, jaw steps, or into the spindle opening. - **4.** With help from another person or a holding device, position the workpiece so it is centered in the chuck. **5.** Tighten each jaw in small increments. After you have adjusted the first jaw, continue tightening the remaining jaws in an opposing sequence, as shown by the sequential order in **Figure 37**. Figure 37. 4-jaw tightening sequence. - **6.** After the workpiece is held in place by the jaws, use a dial indicator to make sure the workpiece is centered in the chuck. - If the workpiece is not correctly centered, make fine adjustments by slightly loosening one jaw and tightening the opposing jaw until the workpiece is correctly positioned (see **Figure 38** for an example). Figure 38. Example photo of non-cylindrical workpiece correctly mounted on the 4-jaw chuck. # **Faceplate** Refer to the **Chuck Installation (Page 38)** and **Chuck Removal (Page 39)** instructions to install or remove the faceplate. The faceplate included with your lathe can be used for a wide range of operations, including machining non-concentric workpieces, straight turning between centers, off-center turning, and boring. The tools needed for mounting a workpiece will vary depending on the type of setup you have. # WARNING Machining non-concentric workpieces at a high speed could cause the workpiece to be thrown from the spindle with deadly force at the operator or bystanders. To reduce this risk, only machine non-concentric workpieces at low speeds and clamp counter-weights to the faceplate to balance it. # **AWARNING** Failure to properly secure a workpiece
to the faceplate could cause the workpiece to be thrown from the lathe with deadly force at the operator or bystanders. Use a minimum of THREE independent clamping devices to hold the workpiece onto the faceplate. # To mount a non-concentric workpiece to the faceplate: - 1. DISCONNECT LATHE FROM POWER! - **2.** Protect the bedway with a piece of plywood. - **3.** With help from another person or a holding device to support the workpiece, position it onto the faceplate and clamp it in place with a minimum of three independent clamping devices (see **Figure 39** for an example). Be sure to take into account the rotational and cutting forces that will be applied to the workpiece when clamping it to the faceplate. If necessary, use counter-weights to balance the assembly and use a dial indicator to make sure that the workpiece is properly positioned for your operation. Figure 39. Example photo of workpiece clamped in a faceplate. # **Tailstock** The tailstock (see **Figure 40**) is typically used to support long workpieces by means of a live or dead center (refer to **Centers** on **Page 46**). It can also be used to hold a drill or chuck to bore holes in the center of a part. Custom arbors and tapers can also be cut on your lathe by using the offset tailstock adjustment. Figure 40. Tailstock and quill lock levers in locked position. #### **Graduated Dial** | Increments | 0.001" | |---------------------|--------| | One Full Revolution | 0.100" | #### Increments on Quill # **Positioning Tailstock** - **1.** Pull the tailstock lock lever backward (away from the spindle) to unlock the tailstock from the bedway. - **2.** Slide the tailstock to the desired position. - **3.** Push the tailstock lock lever forward (toward the spindle) to lock the tailstock against the bedway. #### **Using Quill** - **1.** Move the quill lock lever toward the spindle to unlock the quill. - **2.** Turn the tailstock handwheel clockwise to move the quill toward the spindle or counterclockwise to move it away from it. - **3.** Move the lock lever away from the spindle to secure the quill in place. # **Installing Tooling** This tailstock uses a quill with an MT#5 taper that has a lock slot in the back of the bore that accepts tang arbors and drill bits (see **Figures 41–42** for examples). Figure 41. Types of tapered arbors and tooling. Figure 42. Example photos of inserting MT#5 tools with tangs into the tailstock. However, other tooling without tangs, such as the four remaining tools shown in **Figure 41**, can still be used if the potential load will not exceed the strength of the tapered fit. For example, this includes smaller drill chucks, drill bits, and centers. **Note:** If the tooling has an open hole in the end but is too short to be exposed in the drift slot for removal, then a screw can be threaded into the end of the tool to provide a solid surface for the quill pin to push against when the quill is retracted for tool removal. Otherwise, removal of such tooling may be difficult. #### To install tooling in the tailstock: - **1.** With the tailstock locked in place, unlock the quill, then use the handwheel to extend it approximately 1". - **2.** Thoroughly clean and dry the tapered mating surfaces of the quill and the center, making sure that no lint or oil remains on the tapers. **Note:** If the tapered tool shaft has a tang, align it with the slot in the back of the quill before seating it. - **3.** With a firm and quick motion, insert the tool into the quill. Check to see if it is firmly seated by attempting to twist it—a firmly seated tool will not twist. - **4.** Unlock the tailstock and move it until the tip of the tool is close to, but not touching, the workpiece, then re-lock the tailstock. - **5.** Start spindle rotation, unlock the quill, then turn the tailstock handwheel clockwise to feed the tool into the workpiece. # **Removing Tooling** - **1.** Use a shop rag to hold the tool. - **2.** Rotate the tailstock handwheel counterclockwise until the tool is forced out of the quill. - If the tool does not come loose by retracting the quill, extend the quill and use a drift key in the slot shown in **Figure 43** to remove the tool. Figure 43. Drift key slot in the side of the quill. # **Offsetting Tailstock** The tailstock can be offset from the spindle centerline for turning tapers. Move the tailstock top casting toward the front of the lathe to machine a taper at the tailstock end. Conversely, position the tailstock top casting toward the back of the lathe to machine a taper at the spindle end. **Note:** The marks on the offset indicator are arbitrary. For a precise offset, use a dial indicator to check quill movement while adjusting the screws. | Tools Needed | Qty | |----------------|-----| | Hex Wrench 6mm | 1 | | Wrench 17mm | | #### To offset the tailstock: 1. Loosen the hex bolts underneath both ends of the tailstock to release the clamping pressure between the top and bottom castings (see **Figure 44**). Figure 44. Tailstock offset controls. **2.** Rotate the adjustment set screws in opposite directions for the desired offset (see the illustration in **Figure 45**). Figure 45. Set screw adjustment in relation to tailstock movement. **3.** Retighten the clamping hex bolts underneath the tailstock to secure the offset. # Aligning Tailstock to Spindle Centerline This is an essential adjustment that should be verified or performed each time the tailstock is used to turn concentric workpieces between centers or immediately after offsetting the tailstock when turning a taper. If the tailstock is not aligned with the spindle centerline when it is supposed to be, turning results will be inaccurate along the length of the workpiece. | Items Needed | Qty | |---------------------|-----| | Hex Wrench 6mm | 1 | | Wrench 17mm | | | Round Stock 2" x 6" | 2 | | Precision Level | | #### To align the tailstock to the spindle centerline: - **1.** Use the precision level to make sure the bedway is level from side-to-side and from front-to-back. - If the bedway is not level, correct this condition before continuing with this procedure (refer to Leveling & Mounting on Page 28). - **2.** Center drill both ends of one piece of round stock, then set it aside for use in **Step 5**. - **3.** Use the other piece of round stock to make a dead center, and turn it to a 60° point, as illustrated in **Figure 46**. Figure 46. Turning a dead center. **Note:** As long as this dead center remains in the chuck, the point of the center will remain true to the spindle centerline. The point will have to be refinished whenever the center is removed and then returned to the chuck. - **4.** Install a center in the tailstock. - **5.** Attach a lathe dog to the test stock from **Step 2**, then mount it between the centers (see **Figure 47** for an example). Figure 47. Example photo of stock mounted between the centers. - **6.** Turn 0.010" off the stock diameter. - **7.** Mount a test or dial indicator so that the plunger is on the tailstock quill. **Note:** If necessary in the following step, refer to **Offsetting Tailstock** on **Page 44** for detailed instructions. - **8.** Use calipers to measure both ends of the workpiece. - If the test stock is *thicker* at the tailstock end, move the tailstock toward the *front* of the lathe ½ the distance of the amount of taper (see **Figure 48**). Figure 48. Adjust tailstock toward the operator. — If the test stock is *thinner* at the tailstock end, move the tailstock toward the *back* of the lathe ½ the distance of the amount of taper (see **Figure 49**). Figure 49. Adjust tailstock away from the operator. **9.** Repeat **Steps 6–8** until the desired accuracy is achieved. # **Centers** **Figure 50** shows the MT#5 dead centers included with the lathe. In addition, an MT#7–MT#5 tapered spindle sleeve is included for mounting centers in the spindle. Figure 50. Adapter sleeve and dead centers. #### **Dead Centers** A dead center is a one-piece center that does not rotate with the workpiece and is used to support long, slender workpieces Use the dead center in the spindle for operations where the workpiece rotates with the center and does not generate friction. The carbide-tipped dead center can better withstand the effects of friction and is best used in the tailstock where the workpiece will rotate against it. The tip of the center must be generously lubricated during the operation to avoid premature wear and maximize smooth operation. Using low spindle speeds will also reduce the heat and wear from friction. #### **Live Centers** A live center has bearings that allow the center tip and the workpiece to rotate together; it can be installed in the spindle and the tailstock quill for higher speeds. However, a live center typically does not provide the same level of rigidity as a dead center, and final workpiece accuracy can suffer as a result. # **Mounting Dead Center in Spindle** - 1. DISCONNECT LATHE FROM POWER! - **2.** Thoroughly clean and dry the tapered mating surfaces of the spindle bore, adapter sleeve, and the center, making sure that no lint or oil remains on the tapers. **Note:** This will prevent the tapered surfaces from seizing due to operational pressures, which could make it very difficult to remove the center. - **3.** Mount a chuck or faceplate onto the spindle, whichever is correct for your operation. - **4.** Insert the center into the sleeve, then insert the sleeve into the spindle bore through the chuck or faceplate. **Figure 51** shows an example photo of a dead center installed in the spindle, using a lathe dog and faceplate for turning between centers. Figure 51. Example photo of using a dead center with a faceplate and lathe dog. # **Removing Center from Spindle** To remove the sleeve and center from the spindle, insert a piece of round bar stock or similar tool through the outboard end (on the left side of the headstock). Have another person hold onto the sleeve and center with a gloved hand
or shop rag, then tap the sleeve loose. # NOTICE To avoid premature wear of the dead center or damage to the workpiece, use low spindle speeds and keep the tip of the dead center mounted in the tailstock well lubricated. # **Mounting Center in Tailstock** Either a carbide-tipped dead center or live center can be used in the tailstock. Mounting instructions are the same for both. **Figure 52** shows an example photo of a dead center mounted in a tailstock. Figure 52. Example photo of using a carbide-tipped dead center installed in the tailstock. #### To mount a center in the tailstock: - 1. DISCONNECT LATHE FROM POWER! - **2.** Thoroughly clean and dry the tapered mating surfaces of the tailstock quill bore and the center, making sure that no lint or oil remains on the tapers. **3.** Use the tailstock handwheel to feed the quill out from the casting approximately 1". **Note:** Do not extend the quill more than 2" or stability and accuracy will be reduced. - **4.** Insert the center into the tailstock quill. - **5.** Seat the center firmly into the quill during workpiece installation by rotating the quill handwheel clockwise to apply pressure, with the center engaged in the center hole in the workpiece. Note: Only apply enough pressure with the tailstock quill to securely mount the workpiece between centers. Avoid overtightening the center against the workpiece, or it may become difficult to remove later, and it will result in excessive friction and heat, which may damage the workpiece and center. # **Removing Center from Tailstock** To remove the center from the quill, hold onto it with a gloved hand or shop rag, then rotate the tailstock handwheel counterclockwise to draw the quill back into the casting until the center releases. If the center does not come loose by retracting the quill, extend the quill to expose the slot shown in **Figure 53**, then use a drift key to remove the center. Figure 53. Drift key slot in the side of the quill. # Mounting Workpiece Between Centers - 1. DISCONNECT LATHE FROM POWER! - **2.** Drill center holes in both ends of the workpiece. - **3.** Install a dead center in the spindle with a lathe dog and a chuck or faceplate, then install a live center or carbide-tipped dead center in the tailstock. - **4.** Lubricate the workpiece center holes, then mount the workpiece between the centers and hold it in place with light pressure from the tailstock center. - **5.** Seat the center firmly into the quill by rotating the tailstock handwheel clockwise to apply pressure against the workpiece (see the example in **Figure 54**). Only apply enough pressure to securely mount the workpiece between centers. Avoid over-tightening the center against the workpiece, or it may become difficult to remove later. Also, over-tightening will result in excessive friction and heat, which may damage the workpiece or center. Figure 54. Example photo of a workpiece mounted between the centers. # **Steady Rest** The steady rest supports long shafts and can be mounted anywhere along the length of the bedway. Familiarize yourself with the steady rest components shown in **Figure 55** to better understand its operation. Figure 55. Steady rest components. #### To install and use the steady rest: - 1. DISCONNECT LATHE FROM POWER! - **2.** Thoroughly clean all mating surfaces, then place the steady rest base on the bedways so the triangular notch fits over the bedway prism. - **3.** Position the steady rest where required to properly support the workpiece, then tighten the hex nut shown in **Figure 55** to secure it in place. **4.** Loosen the clamp knob that secures the two halves of the steady rest and open the top portion, as shown in **Figure 56**. Figure 56. Workpiece mounted in the steady rest. - **5.** Loosen the three leaf screws so the finger roller positions can be adjusted. - **6.** Use the finger adjustment knobs to position the bottom two finger rollers against the workpiece, as shown in the example of **Figure 56**. - **7.** Close the steady rest, then use the finger adjustment knobs to adjust all three finger rollers so that they just touch the workpiece without causing deflection. **Note:** The finger rollers should properly support the workpiece along the spindle centerline while still allowing it to freely rotate. **8.** Tighten the three leaf screws to secure the settings. # **Follow Rest** The follow rest mounts to the saddle with two cap screws (see **Figure 57**). It is used on long, slender parts to prevent workpiece deflection from the pressure of the cutting tool during operation. Adjust the follow rest fingers in the same manner as the those on the steady rest. **Note:** To reduce the effects of friction, lubricate the brass finger tips with generous lubricant during operation. Figure 57. Follow rest attachment. # Carriage & Compound Rest Locks The carriage and compound rest have locks that can be tightened to provide additional rigidity during operation, especially during heavy cuts. See **Figure 58** to identify the locations of the locks for each device. Figure 58. Compound rest and carriage locks. # **Compound Rest** The compound rest handwheel has an indirectread graduated scale. This means that the distance shown on the scale represents the actual distance the cutting tool moves. The base of the compound rest has another graduated scale used for setting the cutting tool to a specific angle. #### **Graduated Dial** | Increments | 0.001" | (0.02mm) | |---------------------|--------|----------| | One Full Revolution | 0.100" | (2.54mm) | | Tool Needed | Qty | |-------------|-----| | Wrench 14mm | 1 | #### To set the compound rest at a certain angle: **1.** Loosen the two acorn nuts at the base of the compound rest (1 of 2 shown in **Figure 59**). Figure 59. Compound rest. **2.** Rotate the rest to the desired angle, as indicated by the scale at the base, then retighten the two acorn nuts. **Tip:** The first time you set the angle of the compound rest for cutting threads, mark the location on the cross slide as a quick reference point. This will allow you to quickly return the compound rest to that exact angle the next time you need to cut threads. # **Four-Way Tool Post** The four-way tool post is mounted on top of the compound rest and allows a maximum of four tools to be loaded simultaneously. Each tool can be quickly indexed to the workpiece by loosening the top handle, rotating the tool post to the desired position, then re-tightening the handle to lock the tool into position. # **Installing Tool** | Tool Needed | Qty | |--------------------|-----| | Tool Post T-Wrench | - | #### To install a tool in the tool post: **1.** Adjust the tool post bolts so that the cutting tool can fit underneath them (see **Figure 60**). Figure 60. Example of tool mounted in tool post. # **AWARNING** Over-extending a cutting tool from the post will increase the risk of tool chatter, breakage, or tool loosening during operation, which could cause metal pieces to be thrown at the operator or bystanders with great force. DO NOT extend a cutting tool more than 2.5 times the width of its cross-section or less (e.g, 2.5 x 0.5" = 1.25"). - **2.** Firmly secure the cutting tool with at least two tool post bolts. - **3.** Check and adjust the cutting tool to the spindle centerline, as instructed in the next subsection. # Aligning Cutting Tool with Spindle Centerline For most operations, the cutting tool tip should be aligned with the spindle centerline, as illustrated in **Figure 61**. Figure 61. Cutting tool aligned with spindle centerline (viewed from tailstock). There are a number of ways to check and align the cutting tool to the spindle centerline. If necessary, you can raise the cutting tool by placing steel shims underneath it. The shims should be as long and as wide as the cutting tool to properly support it. #### Below are two common methods: - Align the tip of the cutting tool with a center installed in the tailstock, as instructed on the next page. For this to work, the tailstock must be aligned to the spindle centerline (refer to Aligning Tailstock To Spindle Centerline on Page 45 for detailed instructions). - Make a facing cut on a piece of round bar stock. If the tool is above or below the spindle centerline, a nub will be left in the center of the workpiece. Adjust the height of the tool, then repeat the facing cut to check the adjustment. Repeat as necessary until the center of the workpiece face is smooth. | Tools Needed | Qty | |--------------------|-----------| | Tool Post T-Wrench | | | Steel Shims | As Needed | | Cutting Tool | | | Fine Ruler | | | Tailstock Center | 1 | # To align the cutting tool with the tailstock center: - **1.** Mount the cutting tool in the tool post, then secure the post so the tool faces the tailstock. - **2.** Install a center in the tailstock, and position the center tip near the cutting tool tip. - **3.** Lock the tailstock and quill in place. - **4.** Adjust the height of the cutting tool so that the tool tip is aligned vertically and horizontally with the center tip, as shown in **Figure 62**. Figure 62. Cutting tool tip aligned with tailstock center. # **Micrometer Stop** The micrometer stop is used to limit carriage travel for production runs or make final adjustments to the carriage position. If power feed is being used and the carriage clutch is correctly adjusted, the carriage will disengage from the feed rod when it contacts the micrometer stop and movement will stop. Refer to **Carriage Feed Clutch Knob** on **Page 56** for detailed instructions on adjusting the carriage clutch. # NOTICE The micrometer stop is not designed to stop carriage movement when the leadscrew is engaged for threading operations—doing so may damage the micrometer stop or lathe components. #### #### To set the micrometer stop: - 1. DISCONNECT LATHE FROM POWER! - **2.** Loosen the cap screws shown in **Figure 63**, then use the carriage handwheel to position the carriage and
cutting tool at the desired stopping point. Figure 63. Micrometer stop. - **3.** Move the micrometer stop up to the carriage, use the graduated dial to fine tune the position, then retighten the cap screws loosened in **Step 2**. - **4.** Verify that tooling will not make contact with the chuck, jaws, or other components. # **Manual Feed** The handwheels shown in **Figure 64** allow the operator to manually move the cutting tool. Figure 64. Carriage controls for manual feed. # **Carriage Handwheel** The carriage handwheel moves the carriage left or right along the bed. It has a graduated dial with 0.01" increments, and one full revolution moves the carriage 0.80". Pull the handwheel out to disengage it during power feed operations—this will prevent entanglement hazards. #### **Cross Slide Handwheel** The cross slide handwheel moves the tool toward and away from the work. Adjust the position of the graduated scale by holding the handwheel with one hand and turning the dial with the other. The cross slide handwheel has a direct-read graduated dial, which shows the total amount of material removed from the diameter of the workpiece (i.e., half the amount of tool movement). The dial has 0.001" (0.02mm) increments, and one full revolution moves the slide 0.100" (5.08mm). Rotate the dial collar 180° to read in metric units. #### **Compound Rest Handwheel** The compound rest handwheel moves the cutting tool linearly along the set angle of the compound rest. The compound rest angle is set by handrotating it and securing in place with two hex nuts. The compound rest has an indirect-read graduated dial with 0.001" (0.02mm) increments. One full revolution of the handwheel moves the slide 0.100" (2.54mm). Rotate the dial collar 180° to read in metric units. # **Spindle Speed** Using the correct spindle speed is important for safe and satisfactory results, as well as maximizing tool life. To set the spindle speed for your operation, you will need to: 1) Determine the best spindle speed for the cutting task, and 2) configure the lathe controls to produce the required spindle speed. # **Determining Spindle Speed** Many variables affect the optimum spindle speed to use for any given operation, but the two most important are the recommended cutting speed for the workpiece material and the diameter of the workpiece, as noted in the formula shown in **Figure 65**. Figure 65. Spindle speed formula for lathes. Cutting speed, typically defined in feet per minute (FPM), is the speed at which the edge of a tool moves across the material surface. A recommended cutting speed is an ideal speed for cutting a type of material in order to produce the desired finish and optimize tool life. The books **Machinery's Handbook** or **Machine Shop Practice**, and some internet sites, provide excellent recommendations for which cutting speeds to use when calculating the spindle speed. These sources also provide a wealth of additional information about the variables that affect cutting speed and they are a good educational resource. Also, there are a large number of easy-to-use spindle speed calculators that can be found on the internet. These sources will help you take into account the applicable variables in order to determine the best spindle speed for the operation. #### **Setting Spindle Speed** - **1.** Make sure the spindle is turned *OFF* and it has come to a complete stop. - **2.** Find the spindle speed range in the following options that is closest to your calculated spindle speed: - 20, 25, 35, and 50 RPM - 65, 85, 115, and 150 RPM - 210, 280, 380, and 500 RPM - 670, 900, 1200, and 1600 RPM - **3.** Move the spindle speed range lever (see **Figure 66**) so that the colors of the selected spindle speed range align with those of the stationary plate. Figure 66. Spindle speed of 1600 RPM is selected. **4.** Move the spindle speed lever to align the arrow on the inner hub with the same color as your selected speed on the outer hub. # NOTICE Operating the lathe at spindle speeds higher than 350 RPM when the high (H) gearbox range is selected could result in gearbox damage. Always use spindle speeds of 350 RPM or lower when using the high (H) gearbox range. # **Power Feed** Both the carriage and cross slide have power feed capability when the carriage is engaged with the feed rod. The rate that these components move (feed rate) is controlled by the headstock and quick-change gearbox lever positions, and the end gear configuration. Feed rate and spindle speed must be considered together. Keep in mind that the feed rate is expressed in the amount of travel per revolution of the spindle. The sources you use to determine the optimum spindle speed for an operation will also provide the optimal feed rate to use with that spindle speed. Often, the experienced machinist will use the feeds and speeds given in their reference charts or web calculators as a starting point, then make minor adjustments to the feed rate (and sometimes spindle speed) to achieve the best results. The carriage can alternatively be driven by the leadscrew for threading operations. However, this section only covers the use of the power feed option for the carriage and cross slide components for non-threading operations. To learn how to power the carriage for threading operations, refer to **Threading** on **Page 59**. #### **Power Feed Controls** Use **Figures 67–71** and the following descriptions to become familiar with the locations and functions of the controls that you will use to set up the correct power feed for your operation. **Note:** Before using power feed, you may have to re-configure the end gears, depending on how they are set up. Refer to **End Gears** on **Page 58** for detailed instructions. **Gearbox Range Lever:** Selects the low or high feed rate range by re-aligning the headstock transfer gear. In the middle position, disables power feed (see **Figure 67**). Figure 67. Gearbox range lever. # **NOTICE** Operating the lathe at spindle speeds higher than 350 RPM could result in gearbox damage when the high (H) gearbox range is selected. Always use spindle speeds of 350 RPM or lower when using a high gearbox range. **Headstock Feed Direction Lever:** Selects the direction of power feed (see **Figure 68**). **Note:** The spindle must be stopped to use this lever. When the lathe is running, use the apron feed direction knob. Figure 68. Headstock feed direction lever. **Quick-Change Gearbox Feed Levers:** Configure the quick-change gearbox gears for the feed rate selected per the feed chart (see **Figure 69**). Figure 69. Quick-change gearbox controls. **Feed Selection Knob:** Selects the carriage or cross slide for power feed (see **Figure 70**). When the knob is pulled out, the cross slide is selected. Conversely, when the knob is pushed in, the carriage is selected. Figure 70. Apron feed selection and direction knobs. In the middle position, the apron gears are disengaged from the feed rod and neither component will move. **Note:** When using this control, you may need to rock the handwheel of the component being engaged so that the apron gears will mesh. **Apron Feed Direction Knob:** Changes power feed direction (see **Figure 70**), When pushed in or pulled out, this knob quickly reverses the power feed direction while the spindle is rotating—without having to turn the lathe off and use the feed direction lever on the headstock. # **NOTICE** Depending on the combined configuration of the feed direction lever on the headstock and the feed direction knob on the apron, the actual direction of power feed may be different from the printed indicators on the machine! **Carriage Feed Clutch Knob:** Adjusts how easily the carriage clutch will disengage automatic feeding when the carriage contacts a feed stop or in the event of a crash. Tightening this knob all the way disables the carriage clutch completely (see **Figure 71**). Figure 71. Adjustable carriage feed clutch knob. The carriage clutch serves two purposes: 1) It disengages the carriage feed when the carriage contacts a feed stop, providing a precise repeatable stopping point; and 2) it provides a safety factor in the event of an accidental overload or crash. The correct carriage clutch setting will depend on variables of the operation, such as workpiece material, depth of cut, power feed rate, and others. Finding this clutch setting is a matter of trial-and-error and experience. For a starting point of clutch adjustment, rotate the carriage feed clutch knob clockwise until it is tight, then back it off counterclockwise three full revolutions. This is a reasonably conservative setting to start with. If necessary, further adjust the knob for the setting that is right for your operation. # **NOTICE** The carriage clutch will not stop carriage movement when it is engaged with the leadscrew for threading. If the carriage feed clutch knob is completely tight (all the way clockwise), it will be disabled, which will not allow it to help prevent damage in event of a crash. # **Setting Power Feed Rate** The power feed rate chart displays the settings for the headstock feed controls for metric and inch feed rates (see **Figure 72**). Figure 72. Power feed rate chart. Using the controls on the lathe, follow along with the example below to better understand how to set the lathe for the desired power feed rate. #### Example: Power Feed Rate of 0.0025"/rev - 1. Make sure the end gears are in the standard configuration, which is applicable for general feeding operations (refer to **End Gears** on the **Page 58** for detailed instructions). - **2.** Locate the line in the feed rate chart that lists the setting for 0.0025" of feed per revolution of the spindle, as illustrated in **Figure 73**. Figure 73. Feed rate chart. - **Note:** In the next step, use the chuck key to rock the spindle back and forth to help mesh the gears as you make adjustments. - **3.** For a power feed rate of 0.0025"/rev., use the configuration
string of characters to the left of the selected feed rate (LCT7Y) to configure the controls as follows: - **L** Move the gearbox range lever on the headstock up to the low position. - **C** Point the left gearbox lever to "C". - **T** Point the middle gearbox lever to "T". - **7** Position the bottom gearbox lever in slot "7". - **Y** Point the right gearbox lever to "Y". The lathe is now set up for a power feed rate of 0.0025" per spindle revolution. # NOTICE When using power feed to move the cross slide, the feed rate is 1/2 the value stated in the feed rate chart. # **End Gears** The end gears on the side of the headstock can be setup for the standard or alternate configuration, depending upon the type of operation to be performed. The lathe is shipped with the end gears in the standard configuration. To access the end gears, remove the end gear cover from the left side of the headstock #### **Standard End Gear Configuration** Use the standard end gear configuration (see **Figure 74**) for inch threading, metric threading, and all general feed operations. Figure 74. End gears in the standard configuration. # **Alternate End Gear Configuration** Use the alternate end gear configuration when cutting modular or diametral pitches, as illustrated in **Figure 75**. Figure 75. Alternate end gear configuration. #### **Configuring End Gears** | Tools Needed | Qty | |----------------|-----| | Hex Wrench 6mm | 1 | | Wrench 22mm | 1 | #### To configure the end gears: - 1. DISCONNECT LATHE FROM POWER! - **2.** Remove the end gear cover from the left side of the headstock. - **3.** Remove the cap screw, lock washer, and flat washer from the 57T end gear (see **Figure 76**). Figure 76. End gear components. **4.** Loosen the pivot arm hex nut shown in **Figure 76**, then swing the pivot arm to the left so that the 44T/56T gears are away from the 57T gear. Hand tighten the hex nut to keep the arm in place. # **NOTICE** As you remove and replace end gears, use a stiff brush and mineral spirits to clean away the debris and grime from them, then re-lubricate them as instructed in End Gears on Page 73. - **5.** Making sure to keep the shaft key firmly seated, remove the spacer and the 57T gear, then re-install them as follows: - For the standard end gear configuration, slide the 57T gear on first, then the spacer on the outside. - For the alternate end gear configuration, slide the spacer on first, then the gear. - **6.** Re-install the cap screw, lock washer, and flat washer you removed in **Step 3** to secure the spacer and 57T gear. Do not overtighten. - 7. Slide the pivot arm back so that either the 44T or the 56T meshes with the 57T gear, then retighten the pivot arm hex nut. **Note:** Make sure to keep approximately 0.002" play between the gears. **8.** Replace and secure the end gear cover before re-connecting the lathe to power. # **Threading Controls** The following subsections describe how to use the threading controls and charts on this lathe. If you are unfamiliar with the process of cutting threads on a lathe, we strongly recommend that you read books, review industry trade magazines, or get formal training before doing any threading projects. # **Headstock & Gearbox Threading Controls** The threading charts on the headstock face display the settings for metric and inch threading, and modular and diametral pitches. For inch or metric threads, use the standard end gear configuration. For modular or diametral pitches, use the alternate configuration Use the controls on the lathe and follow along with the example below to better understand how to set up the lathe for the desired threading operation. #### **Example: Metric Thread Pitch of 2.5mm** - 1. Make sure the end gears are in the standard configuration, which is used for all metric threading (refer to **End Gears** on **Page 58** for detailed instructions). - **2.** Locate the line in the metric thread chart that lists the setting for 2.5mm threads, as illustrated in **Figure 77**. Figure 77. Metric thread chart. **Note:** In the next step, use the chuck key to rock the spindle back and forth to help mesh the gears as you make adjustments. - **3.** For a metric thread pitch of 2.5mm, use the configuration string of characters to the right of the selected thread pitch (**LCR3Z**) to position the threading controls as follows: - **L** Move the gearbox range lever to the low position. - **C** Point the left gearbox lever to the **C**. - **R** Point the middle gearbox lever to the **R**. - **3** Position the bottom gearbox lever in the **3** slot. - **Z** Point the right gearbox lever to **Z**. The lathe is now setup to cut a 2.5mm thread pitch. #### **Apron Controls** The half nut lever engages the apron with the leadscrew which moves the carriage and cutting tool along the length of the workpiece for threading operations (see **Figures 78–79**). **Important:** Make sure the feed control lever is in the disengaged (middle) position before attempting to engage the half nut. # NOTICE Attempting to engage the half nut while the cross slide or carriage is engaged with the feed rod could cause severe damage to the lathe. Never attempt to engage the half nut while the feed control lever is engaged. Figure 78. Carriage controls. Figure 79. Feed ON/OFF lever and half nut positions for threading. #### **Thread Dial** The numbers on the thread dial are used with the thread dial chart to show when to engage the half nut during inch threading. The thread dial gear must be engaged with the leadscrew for this to work. Loosen the knurled knob on the thread dial, pivot the dial gear toward the leadscrew so that it properly meshes with the leadscrew threads, then re-tighten the knob, as shown **Figure 80**. Figure 80. Thread dial engaged with the leadscrew. # **NOTICE** When threading, we recommend using the slowest speed possible and avoiding deep cuts, so you can more easily disengage the half nut to prevent an apron crash! #### **Thread Dial Chart** Find the TPI (threads per inch) that you want to cut in the left column of the thread dial chart (see **Figure 81**), then reference the dial number to the right of it. The dial numbers indicate when to engage the half nut for a specific thread pitch. The thread dial chart can also be found on the front of the thread dial housing. Figure 81. Thread dial chart. **Note:** The thread dial is not used for metric threading, or diametral and modular pitches. With these, you must leave the half nut engaged until the turning is complete. The following examples explain how to use the thread dial chart for inch threads. #### **TPI Divisible By 4** For threading a TPI that is divisible by four, use any line on the thread dial (see **Figure 82**). Figure 82. Any position on the dial for threading TPI divisible by 4. #### **Even TPI Not Divisible By 4** For threading a TPI that is even but not divisible by 4, use any of the non-numbered lines on the thread dial (see **Figure 83**). Figure 83. Marks are selected on the dial for threading even TPI not divisible by 4. #### **Odd Numbered TPI** For odd numbered TPI, use any of the numbered lines on the thread dial (see **Figure 84**). Figure 84. Numbers are selected on the dial for threading odd numbered TPI. #### 1/2 Fractional TPI Use any opposing number pairs—2/4 or 1/3 on the thread dial for ½ fractional TPI (see **Figure 85**). For example, to cut a 3½ thread, select 1 or 3 on the dial. Figure 85. Opposing number group are selected on dial for cutting 1/2 thread TPI. #### 1/4 or 3/4 Fractional TPI For TPI that have a ¼ or ¾ fraction, use position 1 on the thread dial (see **Figure 86**). Figure 86. Position for 1/4 or 3/4 fractional TPI. #### 2% TPI The thread dial is not used for 2% or metric threading, or diametral and modular pitches (see **Figure 87**). The half nut must stay engaged with the leadscrew throughout the entire threading operation. Figure 87. Half nut stays engaged for $2^{7/8}$ TPI. # **Chip Drawer** The chip drawer catches swarf and metal chips during the machining process. It contains a screen that keeps the large chips from returning to the reservoir with the run-off coolant—this prevents the chips causing pump damage. Also, it slides open and is removable for cleaning (see **Figure 88**). Figure 88. Chip drawer. # **A**CAUTION The chip drawer is very heavy. Unless removing the chip drawer for cleaning, do not pull it out more than halfway to prevent it falling and causing impact injuries. If removing the drawer for cleaning, get assistance! # **Coolant System** When the coolant pump is turned *ON*, the fluid is delivered through the nozzle attached to the carriage. The flow is controlled by the valve lever at the base of the nozzle (see **Figure 89**). Figure 89. Coolant flow controls. Always use high quality coolant and follow the manufacturer's instructions for diluting and maintenance. The quick reference table shown in **Figure 90** can help you select the appropriate fluid. Refer to Coolant System Service on Page 74 for detailed instructions on how to add or change fluid. Check the coolant regularly and promptly change it when it becomes overly dirty or rancid, or as recommended by the fluid manufacturer. | Workpiece | Dry | Water
Soluble Oil | Synthetic Coolants | Sulferized
Oil | Mineral
Oll | |------------------|-----|----------------------|--------------------|-------------------|----------------| | Aluminum | | Х | х | | | | Brass | X | x | x | | | | Bronze | X | x | х | | x | | Cast iron | X | | | | | | Low Carbon Steel | | x | х | | | | Alloy Metals | | x | x | x | X | | Stainless Steel | | x | x | х | X | **General Note:** Coolants are used for heavy-duty lathe operations and production turning. Oil-water emulsions and synthetic cutting fluids are the most common for typical lathe operations. Sulferized oils often are used for threading. For small projects, spot lubrications can be done with an oil can or brush, or omitted completely. Figure 90.
Coolant selection table. # **AWARNING** BIOLOGICAL & POISON HAZARD! Use the correct personal protection equipment when handling coolant. Follow federal, state, and fluid manufacturer requirements for proper disposal. # NOTICE Running the pump without adequate fluid in the coolant tank may permanently damage it, which will not be covered under warranty. #### To use the coolant system on your lathe: - 1. Make sure the coolant tank is properly serviced and filled with the appropriate fluid, and that you are wearing the necessary personal protection equipment. - **2.** Position the coolant nozzle for your operation. - **3.** Use the coolant pump switch on the control panel to turn the pump *ON*. - **4.** Adjust the flow of coolant by using the valve lever near the base of the nozzle hose. **Important:** Promptly clean any splashed fluid from the floor to avoid a slipping hazard. # **Rod Support** Models SB1047PF, SB1048PF, and SB1058F include a rod support that gives additional reinforcement to the leadscrew and feed rod (see **Figure 91**). Figure 91. Rod support. Ideally, the best position along the bed for the rod support is mid-way between the right end of the leadscrew and the farthest place toward the tailstock that the carriage will travel during the operation. Use a 6mm hex wrench to loosen the cap screws that secure the clamp plate, position the rod support where desired, then re-tighten the cap screws. # NOTICE To avoid lathe damage, make sure the carriage will not crash into the rod support when using longitudinal power feed. # **Accessories** This section includes the most common accessories available for your lathe, which may be available through your local South Bend Lathe Co. dealer. If you do not have a dealer in your area, please call us at (360) 734-1540 or email us at **cs@southbendlathe.com**. #### SB1279-10 Pc. Precision 5-C Collet Set Set of 10 collets sized from ½" - ¾". Same quality as the individual collets, only packaged in one convenient set. Figure 92. Model SB1279 10 Pc. 5-C Collet Set. #### SB1272-Collect Attachment This collet attachment takes advantage of the South Bend factory-made collet port in the lathe gear cover. This accessory installs easily on these South Bend Lathes without having to modify the gear cover. The Model SB1272 is capable of delivering years of trouble-free service. It is manufactured with the same high-quality workmanship, materials, and tolerances South Bend machinery is known for. Figure 93. Model SB1272 Collect Attachment #### SB1298—SBL Bench Lathe Shop Clock SB1299—SBL Toolroom Lathe Shop Clock SB1300—SBL Lathe with Man These fine traditional shop clocks are constructed with a metal antique-finished frame. They are easy to read from a distance and measure 14" in diameter. Pictures just don't do them justice. They are very nice quality clocks and perfect for the South Bend Lathe aficionado. Figure 94. Antique-finished South Bend shop clocks. #### **SB1271-Taper Attachment** This taper attachment mounts quickly to the back bedway of your lathe. Accurate tapers of up to 12" can be produced without repositioning the attachment, having to offset the tailstock, or disengaging the cross slide nut. The Model SB1271 features scales at both ends, reading inches-per-foot and degrees. An angle adjusting knob with fine threads achieves exacting control when setting tapers. Figure 95. Model SB1271 Taper Attachment. # **Maintenance Schedule** # **AWARNING** Always disconnect power to the machine before performing maintenance. Failure to do this may result in electrocution or accidental startup injury. For optimum performance from this machine, this maintenance schedule must be strictly followed. We strongly recommend all operators make a habit of following the daily maintenance procedures. Use the chart provided on **Page 67** to ensure this is done. #### **Ongoing** The condition of machine components should be carefully observed at all times to minimize the risk of injury or machine damage. If any of the conditions below are observed, stop the lathe immediately, disconnect power, and correct the condition before resuming operations: - Loose mounting bolts or fasteners. - Worn, frayed, cracked, or damaged wires. - Guards removed. - STOP button not working correctly or not requiring you to reset it before starting the machine again. - A reduction in braking speed or efficiency. - Oil level not visible in the sight glasses. - Coolant not flowing out. - Damaged or malfunctioning components. #### **Daily, Before Operations** - Check/add headstock oil (Page 68). - Check/add gearbox oil (**Page 69**). - Check/add apron oil (**Page 70**). - Check/add coolant (**Page 74**). - Lubricate the ways (**Page 71**). - Add oil to the ball oilers (**Page 72**). - Clean/lubricate the leadscrew (**Page 72**). - Disengage the feed control lever on the apron (to prevent crashes upon startup). - Ensure carriage lock bolt is loose. #### **Daily, After Operations** - Depress STOP button and shut *OFF* the master power switch (to prevent accidental startup). - Vacuum/clean all chips and swarf from bed, slides, and chip drawer. - Wipe down all unpainted or machined surfaces with an oiled rag. #### **Monthly** • Drain and clean the coolant tank, then add new fluid (**Page 74**). #### **Annually** - Change the headstock oil (**Page 68**). - Change the apron oil (**Page 70**). - Change the gearbox oil (**Page 69**). - Lubricate end gears (**Page 73**). - Check/level bedway (Page 28). # **Cleaning & Protecting** Regular cleaning is one of the most important steps in taking care of this lathe. We recommend that the cleaning routine be planned into the workflow schedule, so that adequate time is set aside to do the job right. Typically, the easiest way to clean swarf from the bed ways and chip drawer is to use a wet/dry shop vacuum that is dedicated for this purpose. The small chips left over after vacuuming can be wiped up with a slightly oiled rag. Avoid using compressed air to blow off chips, as it may drive them deeper into moving surfaces and could cause sharp chips to fly into your face or hands. Besides the ways, all other unpainted and machined surfaces should be wiped down daily to keep them rust-free and in top condition. This includes any surface that is vulnerable to rust if left unprotected (especially any parts that are exposed to water-soluble coolant). Typically, a thin film of oil is all that is necessary for protection. # South Bend Lathe Co. Lathe Monthly Maintenance Chart | | | | | | | | | | | | | | | | | ı | | | | | | | | | | | | | | |------------------------|------|---|-------|------|-------|-----|------|------|-------|------|-------|-------|------|-------|------|------|------|------|-------|-----|------|-----|------|-------|------|-----|------|------|----| | Item Day 1 | 2 | ,
භ | 4 | 20 | 9 | 2 | 8 | 9 1 | 10 11 | 1 12 | 2 13 | 3 14 | t 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | | Lubrication | Ways | Ball Oilers | Leadscrew | Unpainted
Surfaces | Inspection | Headstock
Oil Level | Gearbox
Oil Level | Apron Oil
Level | Coolant
Level | Coolant | Refe | Refer to the coolant manufacture's instructions for more information regarding coolant condition, replacement, dis- | the | cool | ant r | nan | ufac | ture | 's in | stru | ction | oj su | r mc | re ii | nfor | mati | on r | egar | ding. | coo | lant | con | diti | on, r | epla | cem | ent, | dis- | | | Condition | posa | posal, and safety. | es pu | fety | If the box is blacked out, maintenance is not required for that item on that day. Use the maintenance poster included with your South Bend Lathe Use this chart to keep track of the maintenance performed on your South Bend Lathe. Cross out or initial the "Day" box for each item on the list. as a quick reference guide when performing the maintenance items. (360) 734-1540 • FAX: (360) 676-1075 www.southbendlathe.com # Annual Service Once every year, or more often with heavy use, perform these service items. Keep track of whe last performed your annual service and when y need to perform it again. | Date of next annual service: | |------------------------------| | Date of last annual service: | | i, | Service Item | 7 | | |--------|----------------------|---|---| | you'll | Change Gearbox Oil | | | | | Change Headstock Oil | | - | | | Change Apron Oil | | | | | Change Coolant | | | | | | | | Make copies of this page to use each month. Keep each chart as a maintenance record for your South Bend Lathe. # Lubrication #### **Headstock** The headstock is supplied with oil from the oil tank in the base of the left stand. When the spindle motor is started, a belt-driven oil pump circulates oil across the headstock gears before spindle rotation is started. #### **Checking & Adding Oil** | Oil TypeMobil DTE Light o | or ISO 32 Equivalent | |---------------------------|----------------------| | Oil Amount | 15.9 Quarts | | Check/Add Frequency | Daily | | Change Frequency | Annually | Remove the end gear cover and the side access panel from the left stand, then unthread the oil fill cap to check the oil level on the dip stick (see **Figure 29**). Figure 96. Checking headstock oil
tank level. If the oil on the dip stick is less than 3" from the tip of the stick, add oil. #### **Changing Headstock Oil** The headstock oil must be changed after the break-in period and then annually (or every six months with heavy service or extreme working conditions). Since this lathe uses a base-mounted oil tank, removing the drain plug and using a drain pan is not a convenient option when changing the oil. Alternately, we recommend using a remote oil pump with a suction hose that can be inserted through the filler spout to the bottom of the oil tank If a remote oil pump system is not available, use the headstock oil pump for this purpose, as instructed below. | Items Needed: | Qty | |------------------------------------|-----------| | 5-Gallon Waste Oil Bucket with Lid | 1 | | Adjustable Wrench | 1 | | Hex Wrench 4mm | 1 | | Mineral Spirits | As Needed | | Shop Rags | As Needed | | Low-Profile Catch Pan | 1 | | Pipe Tape or Sealant | As Needed | #### To drain the headstock oil tank: - 1. DISCONNECT LATHE FROM POWER! - **2.** Remove the end gear cover and the side access panel from the left stand. - **3.** Disconnect the headstock oil supply hose see (**Figure 97**) from the headstock and point it into the waste bucket. Figure 97. Headstock oil supply hose. - **4.** Staying well away from the V-belts, reconnect the lathe to power and press the spindle motor ON button—DO NOT start spindle rotation! - This will pump oil from the tank into the bucket. - **5.** When oil stops flowing out of the supply hose, immediately press the spindle motor OFF button and disconnect the lathe from power. - **6.** Place the low-profile catch pan under the drain plug shown in **Figure 98**, then remove the drain plug and let the remaining oil flow from the tank. Figure 98. Headstock oil drain plug. **7.** Re-install the drain plug and re-connect the oil supply hose to the headstock connection. **Note:** Use pipe tape or sealant to ensure the connections do not leak. - **8.** Clean away any spilled oil with shop rags and mineral spirits. - **9.** Dispose or recycle the old oil according to federal, state, and local requirements. - **10.** Add oil as previously instructed, then reinstall the end gear cover and side access panel before re-connecting the lathe to power. # **Quick-Change Gearbox** | Oil Type Mobil Vactra 2 or | ISO 68 Equivalent | |----------------------------|-------------------| | Oil Amount | 3.2 Quarts | | Check/Add Frequency | Daily | | Change Frequency | Annually | #### **Checking Oil Level** The quick-change gearbox has the proper amount of oil when the sight glass shown in **Figure 99** is halfway full. Figure 99. Location of quick-change gearbox oil sight glass. #### **Adding Oil** Remove the quick-change gearbox fill plug (see **Figure 100**), then add oil until the level is approximately halfway in the gearbox oil sight glass. Figure 100. Locations of the quick-change gearbox fill and drain plugs. #### **Draining Oil** Place a catch pan under the quick-change gearbox drain plug (see **Figure 100**), loosen the fill plug and remove the drain plug, then allow the gearbox reservoir to empty. #### **Apron** | Oil Type Mobil Vactra 2 or IS | O 68 Equivalent | |-------------------------------|-----------------| | Oil Amount | 2.1 Quarts | | Check/Add Frequency | Daily | | Change Frequency | Annually | #### **Checking Oil Level** The apron has the proper amount of oil when the sight glass shown in **Figure 101** is halfway full. **Important:** Keep in mind that the apron oneshot oiler draws the oil from the apron reservoir. Check this oil level often when using the oneshot oiler. Figure 101. Location of apron oil sight glass. #### **Adding Oil** Remove the twist-off fill plug shown in **Figure 101**, and add oil until the sight glass is halfway full. #### **Draining Oil & Flushing Reservoir** Since the apron oil reservoir supplies the oneshot oiler, the oil is constantly being refreshed when the reservoir is filled. However, small metal particles may accumulate at the bottom of the reservoir with normal use. Therefore, to keep the reservoir clean, drain and flush it at least once a year. Place a catch pan under the apron drain plug shown in **Figure 102**, loosen the fill plug, then use a 6mm hex wrench to remove the drain plug and empty the reservoir. Figure 102. Location of apron drain plug. Flush the reservoir by pouring a small amount of clean oil into the fill hole and allowing it to drain out the bottom. Replace the drain plug and add oil as previously described. ### **One-Shot Oiler** The one-shot oiler shown in **Figure 103** lubricates the saddle ways with oil from the apron reservoir. To use the one-shot oiler, pull the pump knob out for two or three seconds and then push it in. The pump draws oil from the apron reservoir and then forces it through drilled passages to the way guides. Repeat this process while moving the carriage and cross slide through their full range of movement to distribute oil along the ways. Lubricate the guides before and after operating the lathe. If the lathe is in a moist or dirty environment, increase the lubrication interval. Check the apron oil level through the sight glass before using the one-shot oiler to ensure the proper oil level. Figure 103. Location of one-shot oiler on the apron. ## **Longitudinal Leadscrew** | Oil Type Mobil Vactr | a 2 or ISO 68 Equivalent | |-----------------------|--------------------------| | Oil Amount | As Needed | | Lubrication Frequency | Daily | Before lubricating the leadscrew, clean it first with mineral spirits. A stiff brush works well to help clean out the threads. Make sure to move the carriage out of the way, so you can clean the entire length of the leadscrew. Apply a thin coat of oil along the length of the leadscrew. Use a stiff brush to make sure the oil is applied evenly and down into the threads. **Note:** In some environments, abrasive material can become caught in the leadscrew lubricant and drawn into the half nut. In this case, lubricate the leadscrew with a quality dry lubricant. ### **Ball Oilers** Proper lubrication of ball oilers is done with a pump-type oil can that has a plastic or rubberized cone tip. We do not recommend using metal needle or lance tips, as they can push the ball too far into the oiler, break the spring seat, and lodge the ball in the oil galley. Lubricate the ball oilers before and after machine use, and more frequently under heavy use. When lubricating ball oilers, first clean the outside surface to remove any dust or grime. Push the rubber or plastic tip of the oil can nozzle against the ball oiler to create a hydraulic seal, then pump the oil can once or twice. If you see sludge and contaminants coming out of the lubrication area, keep pumping the oil can until the oil runs clear. When finished, wipe away any excess oil. Refer to **Figures 104–106** to identify the locations of each oil device. Figure 104. Carriage ball oilers. Figure 105. Tailstock ball oilers. Figure 106. Leadscrew end bearing. ### **End Gears** | Grease Type | | | NLGI#2 | |-------------|-------------|------|----------| | Frequency | Annually or | When | Changing | The end gears, shown in **Figure 107**, should always have a thin coat of heavy grease to minimize corrosion, noise, and wear. Wipe away excess grease that could be thrown onto the V-belts and reduce optimal power transmission from the motor. Figure 107. End gears. #### **Handling & Care** Make sure to clean and lubricate any gears you install or change. Be very careful during handling and storage—the grease coating on the gears will easily pickup dirt or debris, which can then spread to the other gears and increase the rate of wear. Make sure the end gear cover remains installed whenever possible to keep the gears free of dust or debris from the outside environment. #### Lubricating - 1. DISCONNECT LATHE FROM POWER! - **2.** Remove the end gear cover and all the end gears shown in **Figure 107**. - **3.** Clean the end gears thoroughly with mineral spirits to remove the old grease. Use a small brush if necessary to clean between the teeth. - **4.** Clean the shafts, and wipe away any grease splatters in the vicinity and on the inside of the end gear cover. - **5.** Using a clean brush, apply a thin layer of grease on the gears. Make sure to get grease between the gear teeth, but do not fill the teeth valleys. - 6. Install the end gears and mesh them together with an approximate 0.002" backlash. Once the gears are meshed together, apply a small dab of grease between them where they mesh together—this grease will be distributed when the gears rotate and re-coat any areas scraped off during installation. - **7.** Re-install the end gear cover before reconnecting the lathe to power. # **Coolant System Service** The coolant system consists of a fluid tank, pump, and flexible nozzle. The pump pulls fluid from the tank and sends it to the valve, which controls the flow of coolant to the nozzle. As the fluid leaves the work area, it drains back into the tank through the chip drawer and catch tray where the swarf is screened out. Use **Figures 108–109** to identify the locations of the coolant system controls and components. Figure 108. Coolant controls. Figure 109. Additional coolant components. Although most swarf from machining operations is screened out of the coolant before it returns to the tank, small particles will accumulate in the bottom of the tank in the form of sludge. To prevent this sludge from being pulled into the pump and damaging it, the pump's suction tube is positioned a couple inches from the bottom of the tank and fitted with a fine screen. This works well when the tank is regularly cleaned; however, if too much sludge is allowed to accumulate before the tank is cleaned, the pump will inevitably begin sucking it up. #### **Hazards** As coolants ages and gets used, dangerous microbes can proliferate and create a biological hazard. The risk of
exposure to this hazard can be greatly reduced by replacing the old fluid on a monthly basis, or as indicated by the fluid manufacturer. The important thing to keep in mind when working with the coolant is to minimize exposure to your skin, eyes, and lungs by wearing the proper PPE (Personal Protective Equipment), such as splash-resistant safety goggles, long-sleeve waterproof gloves, protective clothing, and a NIOSH approved respirator. # **AWARNING** BIOLOGICAL & POISON HAZARD! Use the correct personal protection equipment when handling coolant. Follow federal, state, and fluid manufacturer requirements for proper disposal. ## **Adding Fluid** - 1. DISCONNECT LATHE FROM POWER! - **2.** Remove the vented access cover from the rear of the right stand, then slide the tank out, as shown in **Figure 110**. Figure 110. Coolant tank and pump. - **3.** Pour coolant into the tank until it is nearly full. - **4.** Slide the tank back into the cabinet and replace the access cover. ## **Changing Coolant** When you replace the old coolant, take the time to thoroughly clean out the chip drawer, catch tray, and fluid tank. The entire job only takes about a ½ hour when you are prepared with the proper materials and tools. Make sure to dispose of old fluid according to federal, state, and fluid manufacturer's requirements. | Items Needed: | Qty | |---|-------| | Safety Wear See Hazards on Page | e 74 | | New Coolant | arts | | Empty 5-Gallon Bucket w/Lid | 2 | | Phillips Screwdriver #2 | 1 | | Wrench ¾" | 1 | | Disposable Shop Rags As Nee | eded | | Hose or Tubing 5%" x 60" (Optional) 1 F | Piece | | Magnets (Optional) As Many As Des | sired | | | | #### To change the coolant: - **1.** Position the coolant nozzle over the back of the backsplash so that it is pointing behind the lathe. - **2.** Place the 5-gallon bucket behind the lathe and under the coolant nozzle. If you are using the optional hose, connect it to the nozzle and place it in the bucket. Otherwise, you may need to have another person hold the bucket up to the nozzle to prevent coolant from splashing out. - **3.** Turn the coolant pump *ON* and pump the old fluid out of the reservoir. Turn the pump *OFF* immediately after the fluid stops flowing. ## NOTICE Running the coolant pump without adequate fluid in the tank may permanently damage it, which will not be covered under warranty. - **4.** DISCONNECT LATHE FROM POWER! - **5.** Remove the vented access cover from the rear of the right stand, then slide the tank out. - **6.** To enable the remaining fluid to be poured out in the next step, disconnect the fluid hose from the pump (see **Figure 110**). **Note:** The electrical conduit was purposely left long, so the tank can be removed and dumped out without disconnecting the wires from the pump. - **7.** Pour the remaining coolant into the 5-gallon bucket and close the lid. - **8.** Clean all the sludge out of the bottom of the tank and then flush it clean. Use the second bucket to hold the waste and make sure to seal the lid closed when done. Dispose of the old coolant and swarf according to federal, state, and fluid manufacturer's requirements. - **9.** Slide the tank partially into the base and reconnect the fluid hose. - **Tip:** Leave one or more magnets at the bottom of the tank to collect metal chips and make cleanup easier next time. This will also help keep small metal chips out of the pump. - **10.** Refill the tank with new coolant, then slide it completely into the base. - **11.** Replace the access cover panel. - **12.** Re-connect the lathe to power and point the nozzle into the chip drawer. - **13.** Turn the master power switch *ON*, then reset the STOP button. - **14.** Turn the coolant pump *ON* to verify that fluid cycles properly, then turn it *OFF*. ## **Machine Storage** To prevent the development of rust and corrosion, the lathe must be properly prepared if it will be stored for a long period of time. Doing this will ensure the lathe remains in good condition for later use. #### To prepare the lathe for storage: - 1. Run the lathe and bring all gearboxes to operating temperature, then drain and refill them with clean oil. - **2.** Pump out the old coolant, then add a few drops of way oil and blow out the lines with compressed air. - 3. DISCONNECT LATHE FROM POWER! - **4.** Thoroughly clean all unpainted, bare metal surfaces, then apply a liberal coat of way oil, heavy grease, or rust preventative. Take care to ensure these surfaces are completely covered but that the rust preventative or grease is kept off of painted surfaces. - **5.** Lubricate the machine as outlined in the lubrication section. Be sure to use an oil can to purge all ball oilers and oil passages with fresh oil. - 6. Loosen or remove the V-belts so they do not become stretched during the storage period. (Be sure to place a maintenance note near the power button as a reminder that the belts have been loosened or removed.) - **7.** Place a few moisture absorbing desiccant packs inside of the electrical box. - **8.** Cover the lathe and place it in a dry area that is out of direct sunlight and away from hazardous fumes, paint, solvents, or gas. Fumes and sunlight can bleach or discolor paint and make the chuck guard cloudy. - **9.** Every few months, rotate by hand all gear-driven components a few times in several gear selections. This will keep the bearings, bushings, gears, and shafts well lubricated and protected from corrosion—especially during the winter months. Slide the carriage, micrometer stop, tailstock, and steady rest down the lathe bed to make sure that way spotting is not beginning to occur. # **Backlash Adjustment** Backlash is the amount of free play felt while changing rotation directions with the handwheel. This can be adjusted on the compound rest and cross slide leadscrews. Before beginning any adjustment, make sure that all associated components have been cleaned and lubricated. ## **NOTICE** Reducing backlash to less than 0.002" is impractical and can lead to accelerated wear of the wedge, nut, and leadscrew. Avoid the temptation to overtighten the backlash set screw while adjusting. ### **Compound Rest** | Tools Needed: | Qty | |----------------|-----| | Hex Wrench 3mm | 1 | The compound rest backlash is adjusted by tightening the set screws shown in **Figure 111**. When these screws are adjusted against the leadscrew nut, they offset part of the nut to remove play between the nut and leadscrew. Figure 111. Compound rest backlash adjustment set screws. To adjust the backlash, rock the handwheel back and forth, and tighten the screws slowly until the backlash is approximately 0.002"–0.003", as indicated on the graduated dial. If you end up adjusting the nut too tight, loosen the set screws, tap the compound rest a few times with a rubber or wooden mallet, and turn the handwheel slowly back and forth until it moves freely—then try again. ### **Cross Slide** | Tools Needed: | Qty | |----------------|-----| | Hex Wrench 3mm | 1 | | Hex Wrench 5mm | 1 | The cross slide backlash is adjusted by loosening all four cap screws shown in **Figure 112**, then tightening the center set screw. This will push down on a wedge and force the leadscrew nut apart, taking up lash between the nut and leadscrew. Figure 112. Cross slide backlash adjustment screws. To adjust the backlash, remove the compound rest and loosen the four cap screws. Then, rock the cross slide handwheel back and forth, and tighten the set screw slowly until the backlash is at approximately 0.002"–0.003" as indicated on the graduated dial. If you end up adjusting the nut too tight, loosen the set screw, tap the cross slide a few times with a rubber or wooden mallet, and turn the handwheel slowly back and forth, until the handle turns freely—then try again. Remember to re-tighten the four cap screws when you are finished. # Leadscrew End Play Adjustment After a long period of time, you may find that the leadscrew develops a small amount of end play. This end play can be removed with an easy adjustment. | Tools Needed: | Qty | |--------------------------------|-----| | Open End Wrench 36mm or 17/16" | 1 | | Hex Wrench 3mm | 1 | ### To remove leadscrew end play: - 1. DISCONNECT LATHE FROM POWER! - **2.** Loosen both retaining nut set screws (see **Figure 113**). Figure 113. Leadscrew end play adjustment. - **3.** Engage the half nut lever. - **4.** Rotate the carriage handwheel to move the carriage back slightly, then tighten the retaining nut at the same time until the end play is removed. - **5.** Tighten both set screws to secure the setting. ## **Gib Adjustment** The goal of adjusting the gib screws is to remove sloppiness or "play" from the ways without overadjusting them to the point where they become stiff and difficult to move. In general, loose gibs cause poor finishes and tool chatter; however, over-tightened gibs cause premature wear and make it difficult to turn the handwheels. **Important:** Before adjusting the gibs, loosen the locks for the device so that the gibs can freely slide during adjustment, then lubricate the ways. The gibs are tapered and held in position by a screw at each end. To adjust the gib, turn one screw ½ turn clockwise and the other screw ½ turn counterclockwise, so both screws move in the same direction and the same amount. Test the feel of the sliding component by turning the handwheel, and adjust the gib screws as necessary to make it tighter or looser. The gib adjustment process usually requires some trial-and-error. Repeat the adjustment process as necessary until you find the best balance between loose and stiff movement. Most machinists find that the ideal gib adjustment is one where a small amount of drag or resistance is present, yet the handwheels are still easy to move. **Figures 114–118** show the location of the adjustment screws for each gib on this machine. Figure 114. Compound and cross slide gib adjustment screws.
Figure 115. One of two rear saddle gib adjustment screws. Figure 116. Front saddle gib adjustment screw. **Note:** Remove the thread dial body and the carriage lock clamp to access the saddle gib adjustment screw on the tailstock side (see **Figure 117**). Figure 117. Carriage lock clamp. **Note:** Before adjusting the tailstock gib, loosen the clamping hex bolts underneath both ends of the tailstock (see **Figure 118**) to release the clamping pressure between the upper and lower castings. Test the gib adjustment by using the offset adjustment screws. When you are satisfied with the setting, retighten the clamping hex bolts. Figure 118. Tailstock gib adjustment controls. # **Half Nut Adjustment** The clamping pressure of the half nut is fully adjustable with a gib that can be loosened or tightened by two set screws. Use this procedure to adjust the half nut if it becomes loose from wear, or it is too tight for your preferences. A half nut that is too loose will make it difficult to produce accurate work. A half nut that is too tight will increase the rate of wear on itself and the leadscrew. | Tool Needed: | Qty | |----------------|-----| | Hex Wrench 3mm | 1 | #### To adjust the half nut: - **1.** Disengage the half nut, then remove the thread dial. - **2.** Turn the two set screws (see **Figure 119**) clockwise to tighten the half nut and counterclockwise to loosen it. Make sure to turn the set screws in even amounts so that one end of the gib does not become tighter than the other. Figure 119. Half nut gib adjustment. - **3.** Engage/disengage the half nut several times and notice how it feels. The half nut is correctly adjusted when it has a slight drag while opening and closing. The movement should not be too stiff or too sloppy. - **4.** Repeat **Steps 2–3**, if necessary, until you are satisfied with the half nut pressure. - **5.** Re-install the thread dial. ## **V-Belts** V-belts stretch and wear with use, so check the tension on a monthly basis to ensure optimal power transmission. Replace all of the V-belts as a matched set if any of them show signs of glazing, fraying, or cracking. | Tools Needed: | Qty | |-------------------------|------------| | Phillips Screwdriver #2 | 1 | | Open End Wrench 24mm | 1 | ### To adjust the V-belts: - 1. DISCONNECT LATHE FROM POWER! - 2. Remove the motor access covers shown in **Figure 120**. Figure 120. Locations of motor access covers. **3.** Adjust the hex nuts on the motor mount bolts shown in **Figure 121** to move the motor mount plate up or down and adjust the V-belt tension. When correctly tensioned, each belt should have about ³/₄" deflection when pressed firmly (see **Figure 121**). Figure 121. V-belt adjustment. **4.** Tighten the hex nuts against both sides of the motor mount plate to prevent it from moving out of adjustment during operation, then re-install the access covers. # Spindle Clutch Adjustment This lathe uses a dual-clutch mechanism to drive the spindle. The clutch assembly will need to be adjusted if you have difficulty engaging the forward or reverse spindle lever position or if the chuck takes more than 3–4 seconds to reach full speed when set at the highest spindle speed. # **AWARNING** DISCONNECT LATHE FROM POWER before performing this procedure. Failure to do so could result in accidental startup, electrical shock, entanglement or crushing injury, or property damage. DO NOT touch hot components. During use, the clutch and other internal components can become very hot. Wear heavy gloves or allow components to cool before service. Wear safety glasses throughout the entire procedure. Oil may splash and spring-loaded components may be thrown, resulting in injury or loss of vision. DO NOT rotate the spindle or input pulley by hand while hands or fingers are inside the headstock. Doing so may cause entanglement and serious crushing injuries. Support components while their mounting fasteners are being removed. Components may fall or swing outward if they are not properly supported, resulting in crushing or laceration injuries. | Required for Procedure | Qty | |------------------------|-----| | Wrench 4mm | 1 | | Another Person | 1 | #### To adjust the spindle clutch: - 1. DISCONNECT LATHE FROM POWER! - **2.** Move the spindle lever to the center (neutral) position. - **3.** Have another person support the electrical cabinet, then remove the three button-head cap screws shown in **Figure 122**. Figure 122. Removing electrical cabinet fasteners. **4.** Tilt the cabinet out enough to allow access to the clutch access cover, being careful not to strain the lamp or chuck guard safety switch cords. If necessary, remove these components to prevent straining them. Rest the cabinet on a stable support. **5.** Remove the clutch access panel from the rear of the headstock to expose the dual-clutch mechanism (see **Figure 123**). Figure 123. Spindle access panel. **6.** Study **Figure 124** to determine the adjustments that will be required in the following steps. Figure 124. Clutch adjustment overview. ## **AWARNING** DO NOT rotate the spindle or input pulley while any body part is inside the headstock. Doing so may cause entanglement and serious crushing injuries. # **A**CAUTION Clutch components get hot during operation. To avoid burn injuries, wear heavy leather gloves or allow components to cool before service. 7. Use a metal scribe or permanent marker to mark the position of the adjustment ring relative to its clutch assembly, then use a small screwdriver to pry and slide the necessary adjustment ring away from its corresponding clutch to unlock it (see **Figure 125**). Figure 125. Disengaging adjustment ring (reverse side shown). If you have difficulty disengaging the ring, make sure the spindle lever is in the middle (neutral) position. When the ring is fully disengaged, it will spin freely. - If you are loosening the adjustment ring, continue to **Step 8**. - If you are tightening the adjustment ring, skip to **Step 9.** **8.** Loosen the appropriate adjustment ring one notch, then remove your hand from inside the headstock. Have an assistant try to engage the troublesome lever position while you manually rotate the input pulley on the headstock. DO NOT rotate the pulley while your hands are inside the headstock. **Tip:** When rotating the adjustment ring, hold the adjustment ring stationary and rotate the input pulley to make the adjustment. Continue loosening and testing until the lever engages the troublesome position. When you are satisfied with the loosened setting, slide the adjustment ring towards its clutch assembly to lock it in position (see **Figure 126**). Skip to **Step 10**. Figure 126. Engaging adjustment ring (reverse side shown). **9.** Tighten the adjustment ring one notch, then slide the adjustment ring towards its clutch assembly to lock it in position. **Tip:** When rotating the adjustment ring, hold the adjustment ring stationary and rotate the input pulley to make the adjustment. ## **NOTICE** Do not attempt to over-tighten the clutch to reduce spin-up time. 3-4 seconds is the normal time required for the spindle to reach full speed. Overtightening the clutch may result in damage and improper lathe function. - 10. Replace the clutch access cover, pivot the electrical cabinet back into position and secure it with the fasteners removed in Step3. If you removed the chuck guard safety switch or work lamp, replace them. - 11. Re-connect the lathe to power, then check the function of the lathe. Test on the highest speed setting allowed for the chuck being used. Use a 3-jaw chuck with no workpiece mounted. The spindle should take no more than 3–4 seconds to reach full speed. Repeat the clutch adjustment procedure as needed. # Leadscrew Shear Pin Replacement The leadscrew is secured to a connecting collar that is part of the headstock drivetrain with the use of a soft-metal shear pin. The shear pin is designed to break and disengage the power transfer to the leadscrew to help protect more expensive lathe components in the case of a carriage crash or the lathe is overloaded. Contact South Bend to order a replacement shear pin (Part Number PSB10160927) or use the specifications in **Figure 127** to fabricate your own. Figure 127. Shear pin specifications. | Tools Needed: | Qty | |-----------------------------------|-----| | External Retaining Ring Pliers #1 | 1 | | Magnet | 1 | | Safety Goggles | 1 | | Blow Gun w/Compressed Air | | | Light Machine Oil | | #### To replace the shear pin: - 1. DISCONNECT LATHE FROM POWER! - **2.** Clean debris and grime from the shear pin area (see **Figure 128**). Figure 128. Location of shear pin. **3.** Rotate the shroud washer on the leadscrew (see **Figure 129**) so that the cutout lines up with the shear pin head. Figure 129. Shroud washer and shear pin alignment. **4.** Put on safety glasses. ## NOTICE If you fabricate your own shear pin, make sure to use the material and dimensions specified in Figure 127. Otherwise, the shear pin may not provide the intended protection and lathe damage could result. 5. Move the retaining ring shown in **Figure**130 away from the shroud washer, then move the shroud washer away from the shear pin and against the retaining ring. This will create room for you to remove the shear pin. Figure 130. Shear pin access. - **6.** Use the magnet to remove the shear pin head. - 7. Rotate the lathe spindle to line up the inner and outer bores, as shown in **Figure 131**, and use the magnet to remove the other half of the broken shear pin. Figure 131. Shear pin bores aligned. - **8.** Put on safety goggles, insert the blow gun tip into the shear pin hole and blow out the hole with compressed air. - **9.** Put a drop of oil in the hole, then insert the new shear pin into the bore, as shown in **Figure 132**. Note: If the pin does not freely slide into the bore, DO NOT use a hammer on the pin or you may permanently damage the shear mechanism and bore, which would make
it nearly impossible to remove if it breaks again. Instead, take the time to carefully line up the two bores so it slides in easily. Chamfer the end of the pin if necessary to make it easier to insert. Figure 132. New shear pin installed in bore. **10.** With the pin completely seated in the bore and the head flush with the leadscrew shoulder, slide the shroud washer against the shoulder, then rotate the washer 180° to completely cover the head of the shear pin, as shown in **Figure 133**. Figure 133. Shroud washer positioning. 11. Return the retaining ring against the shroud washer and position the retaining ring ears over the shear pin head, as shown in Figure 134. This will prevent the shear pin from falling out if the shroud washer should rotate during operation. Figure 134. Retaining ring positioned with ears in front of pin access groove. # Gap Insert Removal & Installation The gap insert directly under the spindle (see **Figure 135**) can be removed to create additional space for turning large diameter parts. The gap insert was installed, then ground flush with the bed at the factory to ensure a precision fit and alignment. Therefore, if the gap insert is removed, it may be difficult to re-install with the same degree of accuracy. Figure 135. Gap insert. | Tools Needed: | Qty | |------------------|-----| | Hex Wrenches 6mm | 1 | | Hex Wrench 8mm | 1 | | Wrench 17mm | 1 | | Dead Blow Hammer | 1 | ## **Gap Removal** **1.** Remove the four gap-bed cap screws, shown in **Figure 136**. Figure 136. Fasteners holding gap in place. - **2.** Remove the two way-end cap screws. - **3.** Tighten the two dowel-pin jack nuts until the pins are pulled free from the gap insert. - **4.** Tap the outside of the gap insert with a dead blow hammer to loosen it, then remove it. ## **Gap Installation** - 1. Use mineral spirits and a clean lint-free rag to clean the mating surfaces of the gap, bed, and ways. If necessary, stone the mating surfaces to remove scratches, dings, or burrs. - **2.** Wipe a thin layer of light machine oil on the mating surfaces. - **3.** Place the gap insert into the gap and use a dead-blow hammer to align the insert with the lathe bed. - **4.** Back off the dowel pin jack nuts, and lightly tap the dowel pins back into their respective holes until they are seated. This process will further help align the gap insert and bed mating surfaces. - **5.** Install all fasteners and lightly snug them in place. - **6.** Mount a dial indicator with a magnetic base to the top of the saddle to indicate alignment. - **7.** First test the peak of the two prisms of the gap insert that the saddle rides on, then test the flanks of the prisms. - **8.** Tighten the gap bed cap screws in an alternating manner and tap the side of the gap insert into alignment. - **9.** Inspect the gap alignment 24 hours later to make sure the gap is still aligned. If necessary, loosen the gap bed cap screws and repeat **Steps 7–8** until the insert is properly aligned. If you need replacement parts, or if you are unsure how to do any of the solutions given here, feel free to call us at (360) 734-1540. | Symptom | Possible Cause | Possible Solution | |--------------------------------------|---|---| | Machine does not start or a circuit | 1. (First time operation only) Lathe is wired out of phase. | 1. Correct out-of-phase wiring (refer to Page 92 for details). | | breaker trips. | 2. STOP button is engaged or at fault. | 2. Rotate button clockwise until it pops out to reset it for operation; replace if not working properly. | | | 3. Spindle switch(es) are at fault. | 3. Replace bad switch(es). | | | 4. Power supply is switched OFF at master power switch or breaker. | 4. Make sure master power switch and circuit breaker are turned ON . | | | 5. Wall fuse/circuit breaker is blown/
tripped; short in electrical system;
start-up load too high for circuit. | 5. Verify circuit is rated for machine amp load; troubleshoot and repair cause of overload; replace weak breaker; find/repair electrical short. | | | 6. Fuse has blown in machine electrical box. | 6. Replace fuse; determine if overload is due to heavy operation; ensure power source has high enough voltage and power cord is correctly sized. | | | 7. One or more safety switches or brake switch are engaged. | 7. Verify electrical box door, chuck guard, spindle, and brake switches are not engaged. | | | 8. Thermal overload relay has tripped. | 8. Turn the thermal relay cut-out dial to increase working amps and push the reset pin. Replace if tripped multiple times (weak relay). | | | 9. Safety/brake switch(es) at fault. | 10. Test all switches and replace as necessary. | | | 10. Contactor not getting energized/has burned contacts. | 11. Test for power on all legs and contactor operation. Replace unit if faulty. | | | 11. Wiring is open/has high resistance. | 12. Check for broken wires or disconnected/corroded connections, and repair/replace as necessary. | | | 12. Motor is at fault. | 13. Test/repair/replace. | | Loud, repetitious noise coming from | Pulley set screws or keys are missing or loose. | Inspect keys and set screws. Replace or tighten if necessary. | | lathe at or near the motor. | 2. Motor fan is hitting the cover. | 2. Tighten fan, shim cover, or replace items. | | Motor overheats. | 1. Motor overloaded. | 1. Reduce load on motor. | | Motor is loud when | 1. Excessive depth of cut or feed rate. | 1. Decrease depth of cut or feed rate. | | cutting, or bogs
down under load. | 2. Spindle speed or feed rate wrong for cutting operation. | 2. Refer to the feeds and speeds charts in Machinery's Handbook or a speeds and feeds calculator on the internet. | | | 3. Cutting tool is dull. | 3. Sharpen or replace the cutting tool. | | Symptom | Possible Cause | Possible Solution | |----------------------------------|--|---| | Entire machine vibrates upon | 1. Workpiece is unbalanced. | Re-install workpiece as centered with the spindle bore as possible. | | startup and while running. | 2. Workpiece is hitting stationary object. | Stop lathe immediately and correct interference problem. | | | 3. Loose or damaged V-belt(s). | 2. Re-tension/replace the V-belt(s) as necessary (see Page 80). | | | 4. V-belt pulleys are not properly aligned. | 3. Align the V-belt pulleys. | | | 5. Chuck or faceplate is unbalanced. | 5. Re-balance chuck or faceplate; contact a local machine shop for help. | | | 6. Gears not aligned in headstock or no backlash. | 6. Adjust gears and establish backlash. | | | 7. Broken gear or bad bearing. | 7. Replace broken gear or bearing. | | | 8. Spindle bearings at fault. | 9. Reset spindle bearing preload or replace worn spindle bearings. | | Bad surface finish. | 1. Wrong spindle speed or feed rate. | 1. Adjust for appropriate spindle speed and feed rate. | | | 2. Dull tooling or poor tool selection. | 2. Sharpen tooling or select a better tool for the intended operation. | | | 3. Tool height not at spindle centerline. | 3. Adjust tool height to spindle centerline (see Page 51). | | | 4. Too much play in gibs. | 4. Tighten gibs (see Page 78). | | Tapered tool difficult to remove | Quill is not retracted all the way back into the tailstock. | Turn the tailstock handwheel until it forces the tapered tool out of quill. | | from tailstock quill. | 2. Contaminants not removed from taper before inserting into quill. | 2. Clean the taper and bore and re-install tapered tool. | | Cross slide, | 1. Gibs are out of adjustment. | 1. Adjust gib screw(s) (see Page 78). | | compound, or carriage feed has | 2. Handwheel is loose or backlash is high. | 2. Tighten handwheel fasteners, adjust handwheel backlash to a minimum (see Page 77). | | sloppy operation. | 3. Leadscrew mechanism worn or out of adjustment. | 3. Adjust leadscrew to remove end play (see Page 78). | | | 4. Ways are loaded with grime or chips. | 4. Clean the ways and re-lubricate. | | Cross slide,
compound, or | 1. Dovetail slides loaded with shavings, dust, or grime. | Remove gibs, clean ways/dovetails, lubricate, and re-adjust gibs. | | carriage feed | 2. Gib screws are too tight. | 2. Loosen gib screw(s) slightly (see Page 78). | | handwheel is hard to move. | 3. Backlash setting too tight (cross slide only). | 3. Slightly loosen backlash setting (see Page 78). | | | 4. Bedways are dry. | 4. Lubricate bedways and handles. | | Cutting tool | 1. Tool holder not tight enough. | 1. Check for debris, clean, and retighten. | | or machine components vibrate | 2. Cutting tool sticks too far out of tool holder; lack of support. | 2. Re-install cutting tool so no more than ½ of the total length is sticking out of tool holder. | | excessively during cutting. | 3. Gibs are out of adjustment. | 3. Adjust gib screws at affected component (see Page 78) | | | 4. Dull cutting tool. | 4. Replace or resharpen cutting tool. | | | 5. Incorrect spindle speed or feed rate. | 5. Use the recommended spindle speed. | | Symptom | Possible Cause | Possible Solution | |--|---
---| | Workpiece is tapered. | Spindle and tailstock centerlines
are not properly aligned with each
other. | Realign the tailstock to the headstock spindle bore centerline (see Page 45). | | Chuck jaws will not move or do not move easily. | Chips lodged in the jaws or scroll plate. | Remove jaws, clean and lubricate scroll plate, then replace jaws. | | Carriage will not feed or is hard to move. | Gears are not all engaged. Carriage lock is tightened down. | Adjust gear levers. Check to make sure the carriage lock bolt is fully released. | | | 3. Loose screw on the feed handle.4. Chips have loaded up on bedways. | 3. Tighten.4. Frequently clean away chips that load up during turning operations. | | | 5. Bedways are dry and in need of lubrication. | 5. Lubricate bedways and handles. | | | 6. Micrometer stop is interfering. | 6. Check micrometer stop position and adjust it as necessary (see Page 52). | | | 7. Gibs are too tight.8. Gears or shear pin broken. | 7. Loosen gib screw(s) slightly (see Page 78).8. Replace gears or shear pin (see Page 84). | | Gear change levers will not shift into position. 1. Gears not aligned inside headstock. | | Rotate spindle by hand with light pressure on the lever until gear falls into place. | | Spindle clutch takes more than 3–4 seconds to engage. | 1. Spindle clutch mechanism is too loose. 1. Adjust spindle clutch (see Page 81). | | | Difficulty engaging spindle lever. | 1. (When new) Spindle clutch needs break-in time. | Use moderate pressure to engage spindle lever until it is broken-in. | | | 2. Spindle clutch is too tight. | 2. Adjust spindle clutch (see Page 81). | ## **Electrical Safety Instructions** These pages are accurate at the time of printing. In the constant effort to improve, however, we may make changes to the electrical systems of future machines. Study this section carefully. If you see differences between your machine and what is shown in this section, call Technical Support at (360) 734-1540 for assistance BEFORE making any changes to the wiring on your machine. Shock Hazard: It is extremely dangerous to perform electrical or wiring tasks while the machine is connected to the power source. Touching electrified parts will result in personal injury including but not limited to severe burns, electrocution, or death. For your own safety, disconnect machine from the power source before servicing electrical components or performing any wiring tasks! **Wire Connections:** All connections must be tight to prevent wires from loosening during machine operation. Double-check all wires disconnected or connected during any wiring task to ensure tight connections. **Modifications:** Using aftermarket parts or modifying the wiring beyond what is shown in the diagram may lead to unpredictable results, including serious injury or fire. **Motor Wiring:** The motor wiring shown in these diagrams is current at the time of printing, but it may not match your machine. Always use the wiring diagram inside the motor junction box. **Circuit Requirements:** Connecting the machine to an improperly sized circuit will greatly increase the risk of fire. To minimize this risk, only connect the machine to a power circuit that meets the minimum requirements given in this manual. **Capacitors/Inverters:** Some capacitors and power inverters store an electrical charge for up to 10 minutes after being disconnected from the power source. To reduce the risk of being shocked, wait at least this long before working on capacitors. **Wire/Component Damage:** Damaged wires or components increase the risk of serious personal injury, fire, or machine damage. If you notice that any wires or components are damaged while performing a wiring task, replace those wires or components before completing the task. **Experiencing Difficulties:** If you are experiencing difficulties understanding the information included in this section, contact our Technical Support at (360) 734-1540. # Correcting Phase Polarity This sub-section is only provided for troubleshooting. If you discover during the test run that the lathe will not operate, or that the spindle runs backwards, the lathe may be wired out of phase. Without the proper test equipment to determine the phase of power source legs, wiring machinery to 3-phase power may require trial-and-error. Correcting this is simply a matter of reversing the positions where two of the incoming power source wires are connected. #### To correct wiring that is out of phase: - **1.** Push the STOP button, turn the master power switch to OFF, and disconnect the machine from power. - **2.** Open the electrical box and swap any two hot wires coming from the power supply, as illustrated in **Figure 137**. - **3.** Close and latch the electrical box, and reconnect the machine to the power source. Figure 137. Swapping L1 and L2 power connections to correct out-of-phase wiring. # **Wiring Overview** # **Component Location Index** ELECTRICAL Figure 138. Component location index. ## **Electrical Cabinet** Power Supply Connection Page 99 # **Electrical Box** Figure 139. Electrical box. # **Spindle Motor** Figure 140. Spindle motor location. # **Coolant Pump** Figure 141. Coolant pump location. ## **Control Panel** Figure 142. Control panel wiring. # **Additional Components** Figure 143. End Gear Cover Safety switch location. Figure 144. Chuck Guard Safety switch location. # **Power Supply Connection** # **Headstock Housing 1** # **Headstock Housing 2** # **Headstock Housing Parts List** | REF | PART# | DESCRIPTION | |-----|---------------|-------------------------| | 1 | PSB1046PF0001 | SHIFT LEVER END CAP | | 2 | PSB1046PF0002 | SHIFT LEVER | | 3 | PCAP38M | CAP SCREW M58 X 25 | | 4 | PSB1046PF0004 | SHAFT COLLAR | | 5 | PK47M | KEY 4 X 4 X 15 | | 6 | PSB1046PF0006 | SHIFT LEVER SHAFT | | 7 | PK48M | KEY 4 X 4 X 20 | | 8 | PSB1046PF0008 | DETENT PIN | | 9 | PSB1046PF0009 | COMPRESSION SPRING | | 10 | PSB1046PF0010 | SHIFT KNUCKLE | | 11 | PRO7M | EXT RETAINING RING 18MM | | 12 | PSB1046PF0012 | SHIFT TAB | | 13 | PS107M | PHLP HD SCR M6-1 X 20 | | 14 | PSB1046PF0014 | LEVER BEVELED WASHER | | 15 | PSB1046PF0015 | SPEED SELECTION LEVER | | 16 | PR15M | EXT RETAINING RING 30MM | | 17 | PSB1046PF0017 | RANGE SELECTION LEVER | | 18 | PK19M | KEY 5 X 5 X 14 | | 19 | PSB1046PF0019 | SPEED SLECTOR SHAFT | | 20 | PK19M | KEY 5 X 5 X 14 | | 21 | PCAP40M | CAP SCREW M8-1.25 X 35 | | 22 | PSB1046PF0022 | LEVER HOUSING | | 23 | PK82M | KEY 7 X 7 X 18 | | 24 | PSB1046PF0024 | RANGE SELECTOR SHAFT | | 25 | PSB1046PF0025 | SELECTOR SLEEVE | | 26 | PR12M | EXT RETAINING RING 35MM | | 27 | PSB1046PF0027 | SELECTOR DISC | | 28 | PSB1046PF0028 | SIGHT GLASS | | 29 | PSB1046PF0029 | STEP PIN | | 30 | PSB1046PF0030 | UPPER PIVOT ROD | | 31 | PSB1046PF0031 | UPPER SHIFT YOKE | | 32 | PECO3M | E-CLIP 10MM | | 33 | PSB1046PF0033 | SHIFT FORK | | 34 | PSB1046PF0034 | SHIFT ARM PIVOT BOLT | | 35 | PSB1046PF0035 | SHIFT ARM | | 36 | PSB1046PF0036 | SHIFT FORK | | 37 | PSB1046PF0037 | LOWER SHIFT YOKE | | 38 | PSB1046PF0038 | LOWER PIVOT ROD | | 39 | PCAPO7M | CAP SCREW M6-1 X 30 | | REF | PART# | DESCRIPTION | |-----|---------------|----------------------------------| | 40 | PSB1046PF0040 | DETENT BRACKET | | 41 | PSB1046PF0041 | SHIFT LIMIT PIN | | 42 | PSB1046PF0042 | OIL TUBE | | 43 | PSB1046PF0043 | SHIFT YOKE FRAME | | 44 | PSB1046PF0044 | OIL FITTING | | 45 | PSB1046PF0045 | PIVOT ARM BOLT HEX NUT | | 46 | PSB1046PF0046 | PIVOT ROD LOCK COLLARS | | 47 | PCAP14M | CAP SCREW M8-1.25 X 20 | | 48 | PSB1046PF0048 | SHIFT FORK | | 49 | PSB1046PF0049 | OUTBOARD SIDE SHIFT LEVER | | 50 | PSB1046PF0050 | HEADSTOCK TOP COVER | | 51 | PSB1046PF0051 | HEADSTOCK CASTING (SB1046PF-48PF | | 51 | PSB1056F0051 | HEADSTOCK CASTING (SB1056F-58F) | | 52 | PSB1046PF0052 | COMPRESSION SPRING | | 53 | PFH05M | FLAT HD SCR M58 X 12 | | 54 | PW03M | FLAT WASHER 6MM | | 55 | PK07M | KEY 6 X 6 X 20 | | 56 | PRP76M | ROLL PIN 4 X 16 | | 57 | PSB1046PF0057 | FLANGE BUSHING | | 58 | PSB1046PF0058 | LEVER | | 59 | PSB1046PF0059 | PIVOT PIN | | 60 | PSB1046PF0060 | LEVER ROLLER | | 61 | PCAP50M | CAP SCREW M58 X 10 | | 62 | PSB1046PF0062 | INNER LEVER SLEEVE | | 63 | PSB1046PF0063 | LEVER SHAFT | | 64 | PSB1046PF0064 | SHIFT FORK | | 65 | PRO1M | EXT RETAINING RING 10MM | | 66 | PSB1046PF0066 | SHIFT TAB | | 67 | PK42M | KEY 6 X 6 X 30 | | 68 | PSB1046PF0068 | RETAINING FLAT WASHER 6MM | | 69 | PCAPO1M | CAP SCREW M6-1 X 16 | | 70 | PSB1046PF0070 | EXTENSION SPRING | | 71 | PCAPO2M | CAP SCREW M6-1 X 20 | | 72 | PSB1046PF0072 | BUSHING | | 73 | PSB1046PF0073 | DETENT PLATE | | 74 | PSB1046PF0074 | SPRING HANGER | | 75 | PSB1046PF0075 | SPRING PLATE | | 76 | PNO1M | HEX NUT M6-1 | | 77 | PSB1046PF0077 | HEADSTOCK REAR COVER | # **Headstock Gears 1** # **Headstock Gears 2** # **Headstock Gears Parts List** | REF | PART# | DESCRIPTION | |-----|---------------|-------------------------| | 101 | PSB1046PF0101 | CAMLOCK STUD | | 102 | PSB1046PF0102 | SPINDLE BOLT | | 103 | PSB1046PF0103 | SPINDLE | | 104 | PSB1046PF0104 | COMPRESSION SPRING | | 105 | PSB1046PF0105 | CAMLOCK | | 106 | PSB1046PF0106 | KEY 15 X 10 X 78 | | 107 | PCAP29M | CAP SCREW M6-1 X 40 | | 108 | PSB1046PF0108 | FRONT BEARING COVER | | 109 | PSB1046PF0109 | INBOARD SPINDLE GASKET | | 110 | P32026 | TAPERED BEARING 32026 | | 111 | PSB1046PF0111 | GEAR 75T | | 112 | PSB1046PF0112 | GEAR 56T | | 113 | PSB1046PF0113 | SPINDLE SPACER | | 114 | P6022-0PEN | BALL BEARING 6022 OPEN | | 115 | PR90M | EXT RETANING RING 110MM | | 116 | PK114M | KEY 10 X 8 X 35 | | 117 | PSB1046PF0117 | GEAR 48T | | 118 | P32021 | TAPER BEARING 32021 | | 119 |
PSB1046PF0119 | SPANNER NUT | | 120 | PSB1046PF0120 | OUTBOARD SPINDLE GASKET | | 121 | PSB1046PF0121 | REAR BEARING COVER | | 122 | PCAP14M | CAP SCREW M8-1.25 X 20 | | 123 | PSB1046PF0123 | PLUG | | 124 | PORGO65 | 0-RING 64.4 X 3.1 G65 | | 125 | PSB1046PF0125 | PLUG | | 126 | P0RG055 | 0-RING 54.4 X 3.1 G55 | | 127 | P6305-0PEN | BALL BEARING 6305 OPEN | | 128 | PR38M | INT RETAINING RING 62MM | | 129 | PSB1046PF0129 | COMBO GEAR 21T/4OT | | 130 | PSB1046PF0130 | SPLINED SHAFT | | 131 | PSB1046PF0131 | COLLAR | | 132 | P6007-0PEN | BALL BEARING 6007 OPEN | | 133 | PSB1046PF0133 | COMBO GEAR 26T/38T | | 134 | PSB1046PF0134 | COMBO GEAR 30T/34T | | 135 | PR32M | EXT RETAINING RING 48MM | | 136 | PSB1046PF0136 | GEAR 32T | | 137 | PSB1046PF0137 | GEAR SHAFT 16T | | 138 | PSB1046PF0138 | SPLINED SHAFT COVER | | 139 | PCAPO2M | CAP SCREW M6-1 X 20 | | 140 | PRP02M | ROLL PIN 3 X 16 | | 141 | PSB1046PF0141 | SHAFT COVER PLATE | | 142 | PSB1046PF0142 | SPACER | | 143 | PORPO30 | 0-RING 29.7 X 3.5 P30 | | 144 | PSB1046PF0144 | OIL SEAL 507212 | | 145 | PR64M | INT RETAINING RING 72MM | | 146 | P6207-RS | BALL BEARING 6207-RS | | 147 | PSB1046PF0147 | SPLINED GEAR SHAFT 16T | | 148 | PK136M | KEY 8 X 8 X 30 | | 149 | PR68M | EXT RETAINING RING 40MM | | 150 | PSB1046PF0150 | GEAR 35T | | REF | PART# | DESCRIPTION | |-----|---------------|-------------------------------| | 151 | P6008-0PEN | BALL BEARING 6008 OPEN | | 152 | PSB1046PF0152 | COMBO GEAR 25T/40T | | 153 | PSB1046PF0153 | BRAKE DRUM SHAFT | | 154 | PSB1046PF0154 | BRAKE SHOE | | 155 | PSB1046PF0155 | COMPRESSION SPRING | | 156 | PSB1046PF0156 | BRAKE DRUM | | 157 | PWO1M | FLAT WASHER 8MM | | 158 | PCAP31M | CAP SCREW M8-1.25 X 25 | | 159 | PSB1046PF0159 | CENTRIFUGAL BRAKE CYLINDER | | 160 | PSB1046PF0160 | BRAKE SHOE BUSHING | | 161 | PS11M | PHLP HD SCR M6-1 X 16 | | 162 | PSB1046PF0162 | RETAINER PIN | | 163 | PSB1046PF0163 | BRAKE ASSEMBLY FLAT WASHER | | 164 | PSB1046PF0164 | BRAKE ASSEMBLY COLLAR | | 165 | PSB1046PF0165 | NEEDLE ROLLER BEARING NK22/20 | | 166 | PR43M | EXT RETAINING RING 50MM | | 167 | PSB1046PF0167 | SHAFT | | 168 | PSB1046PF0168 | KEY 10 X 7 X 18 | | 169 | PSB1046PF0169 | KEY 10 X 7 X 30 | | 170 | PSB1046PF0170 | CLUTCH/GEAR ASSEMBLY 31T | | 171 | PSB1046PF0171 | OUTBOARD COPPER COLLAR | | 172 | PSB1046PF0172 | CLUTCH ASSEMBLY | | 173 | PSB1046PF0173 | INBOARD COPPER COLLAR | | 174 | P6906-0PEN | BALL BEARING 6906-0PEN | | 175 | PSB1046PF0175 | CLUTCH/GEAR ASSY 27T | | 176 | PSB1046PF0176 | CLUTCH ASSEMBLY SHAFT | | 177 | PSB1046PF0177 | WOODRUFF KEY 25 X 7 | | 178 | P6206-0PEN | BALL BEARING 6206 OPEN | | 179 | P0RG075 | 0-RING 74.4 X 3.1 G75 | | 180 | PSB1046PF0180 | BEARING SEAT | | 181 | PSB1046PF0181 | OIL SEAL 406212 | | 182 | PSB1046PF0182 | PULLEY SPACER | | 183 | PSB1046PF0183 | SPINDLE PULLEY | | 184 | PSB1046PF0184 | PULLEY FLAT WASHER | | 185 | PCAP13M | CAP SCREW M8-1.25 X 30 | | 186 | PORPO16 | 0-RING 15.8 X 2.4 P16 | | 187 | PCAP26M | CAP SCREW M6-1 X 12 | | 188 | PSB1046PF0188 | SHAFT RETAINING FLAT WASHER | | 189 | PSB1046PF0189 | CHANGE GEAR SHAFT | | 190 | PSB1046PF0190 | CHANGE GEAR SHAFT | | 191 | PSB1046PF0191 | OIL SEAL 385508 | | 192 | PSB1046PF0192 | SHAFT HOUSING | | 193 | PSB1046PF0193 | SPINED SHAFT | | 194 | PSB1046PF0194 | SPLINED SHAFT SPACER | | 195 | PSB1046PF0195 | NEEDLE BEARING 32 X 30 | | 196 | PR15M | EXT RETAINING RING 30MM | | 197 | PSB1046PF0197 | GEAR 24T | | 198 | PSB1046PF0198 | OIL DRAIN PLUG 1/2" NPT | | 199 | PSB1046PF0199 | ELBOW 3/4 X 1/2" NPT | | 200 | PSB1046PF0200 | COUPLER 3/4" NPT | # **Headstock Gears Parts List** | REF | PART# | DESCRIPTION | |-----|---------------|-------------------------------| | 201 | PSB1046PF0201 | CHANGE GEAR SHAFT | | 202 | PSB1046PF0202 | GEAR 24T | | 203 | PR37M | EXT RETAINING RING 32MM | | 204 | PSB1046PF0204 | CHANGE GEAR SHAFT | | 205 | PSB1046PF0205 | COMBO GEAR 24T/48T | | 206 | PSB1046PF0206 | CHANGE GEAR SHAFT | | 207 | PSB1046PF0207 | COMBO GEAR 48T/24T | | 208 | PCAPO1M | CAP SCREW M6-1 X 16 | | 209 | PSB1046PF0209 | CHANGE GEAR SHAFT | | 210 | P0RG035 | 0-RING 3.1 X 34.4 G35 | | 211 | PSB1046PF0211 | NEEDLE ROLLER BEARING NAX3030 | | 212 | PSB1046PF0212 | GEAR 28T | | 213 | PSB1046PF0213 | CHANGE SPACER | | REF | PART# | DESCRIPTION | |-----|---------------|------------------------| | 214 | PSB1046PF0214 | SHAFT COVER PLATE | | 215 | PSB1046PF0215 | FLANGED BEARING | | 216 | PSB1046PF0216 | SPLINED SHAFT | | 217 | PSB1046PF0217 | GEAR 27T | | 218 | PSB1046PF0218 | SPACER | | 219 | PSB1046PF0219 | GEAR 23T | | 220 | PSB1046PF0220 | SPACER | | 221 | PSB1046PF0221 | GEAR 27T | | 222 | PSB1046PF0222 | GEAR 19T | | 223 | PSB1046PF0223 | SPACER | | 224 | PSB1046PF0224 | GEAR 31T | | 225 | P6207-0PEN | BALL BEARING 6207-0PEN | | 226 | PSB1046PF0226 | BEARING RETAINER | # **Gearbox 1** ## **Gearbox 2** # **Gearbox Parts List** | 501 P6B1046PF0301 SPLINED SHAFT 302 PKI09M KEY 7 X 7 X 35 303 P6B1046PF0303 SHAFT SPACER 304 P6B1046PF0304 OIL GEAL 253708 305 P9B1046PF0305 NEEDLE BEARING 306 PCAPOIM CAP SCREW M6-1 X 16 307 P9B1046PF0300 SPALER 308 P9B1046PF0300 SPACER 309 PRIIM EXT RETAINING RING 25MM 310 P9B1046PF0310 GEAR 191719T 311 P6B1046PF0311 SPLINED SHAFT 312 P9B1046PF0312 SHAFT COVER 313 P9B1046PF0313 SCVER GASKET 314 P6005-0PEN BALL BEARING 6005 0PEN 315 P9B1046PF0315 SPACER 316 P9B1046PF0316 GEAR 201730T 317 P9B1046PF0316 GEAR 201730T 318 PRIM EXT RETAINING RING 30MM 319 P9B1046PF0319 SPLINED SHAFT 320 P7B1046PF0320 GEAR 22T 321 | REF | PART# | DESCRIPTION | |--|-----|---------------|-------------------------| | Poblo46PF0303 | 301 | PSB1046PF0301 | SPLINED SHAFT | | 304 PSB1046PF0304 OIL SEAL 253708 305 PSB1046PF0305 NEEDLE BEARING 306 PCAPOIM CAP SCREW M6-1 X 16 307 PSB1046PF0307 SPLINED SHAFT SEAT 308 PSB1046PF0308 SPACER 309 PRIIM EXT RETAINING RING 25MM 310 PSB1046PF0310 GEAR 197/19T 311 PSB1046PF0311 SPLINED SHAFT 312 PSB1046PF0312 SHAFT COVER 313 PSB1046PF0313 COVER GASKET 314 P6005-0PEN BALL BEARING 6005 0PEN 315 PSB1046PF0315 SPACER 316 PSB1046PF0316 GEAR 2017/30T 317 PSB1046PF0316 GEAR 2017/30T 318 PRISM EXT RETAINING RING 30MM 319 PSB1046PF0316 GEAR 22T 320 PSB1046PF0320 GEAR 22T 321 PSB1046PF0321 SHAFT SPACER 322 PSB1046PF0322 SPLINED SHAFT 323 PSB1046PF0323 GEAR 23T <td< td=""><td>302</td><td>PK109M</td><td>KEY 7 X 7 X 35</td></td<> | 302 | PK109M | KEY 7 X 7 X 35 | | 305 PSB1046PF0305 NEEDLE BEARING 306 PCAPOIM CAP SCREW M6-1 X 16 307 PSB1046PF0307 SPLINED SHAFT SEAT 309 PRIIM EXT RETAINING RING 25MM 309 PRIIM EXT RETAINING RING 25MM 310 PSB1046PF0310 GEAR 1971/19T 311 PSB1046PF0311 SPLINED SHAFT 312 PSB1046PF0313 COVER GASKET 313 PSB1046PF0313 COVER GASKET 314 P6005-0PEN BALL BEARING 6005 OPEN 315 PSB1046PF0316 GEAR 201730T 316 PSB1046PF0316 GEAR 201730T 317 PSB1046PF0316 GEAR 201730T 318 PRISM EXT RETAINING RING 30MM 319 PSB1046PF0319 SPLINED SHAFT 320 PSB1046PF0320 GEAR 22T 321 PSB1046PF0321 SHAFT SPACER 322 PSB1046PF0323 GEAR BOX CASTING 324 PSB1046PF0324 GEAR 23T 325 PSB1046PF0325 GEAR 23T | 303 | PSB1046PF0303 | SHAFT SPACER | | 306 PCAPOIM CAP SCREW M6-1 X 16 307 PSB1046PF0307 SPLINED SHAFT SEAT 308 PSB1046PF0308 SPACER 309 PRIIM EXT RETAINING RING 25MM 310 PSB1046PF0311 SPLINED SHAFT 311 PSB1046PF0313 SPLINED SHAFT 312 PSB1046PF0313 COVER GASKET 313 PSB1046PF0313 COVER GASKET 314 P6005-0PEN BALL BEARING 6005 0PEN 315 PSB1046PF0315 SPACER 316 PSB1046PF0316 GEAR 201730T 317 PSB1046PF0317 SPACER 318 PRISIM EXT RETAINING RING 30MM 319 PSB1046PF0319 SPLINED SHAFT 320 PSB1046PF0320 GEAR 22T 321 PSB1046PF0320 GEAR 22T 322 PSB1046PF0322 SPLINED SHAFT 322 PSB1046PF0323 GEAR BOX CASTING 324 PSB1046PF0324 GEAR 23T 325 PSB1046PF0324 GEAR 23T 326 | 304 | PSB1046PF0304 | OIL SEAL 253708 | | 307 PSB1046PF0307 SPLINED SHAFT SEAT 308 PSB1046PF0308 SPACER 309 PRIIM EXT RETAINING RING 25MM 310 PSB1046PF0310 GEAR 1971/9T 311 PSB1046PF0311 SPLINED SHAFT 312 PSB1046PF0312 SHAFT COVER 313 PSB1046PF0313 COVER GASKET 314 P6005-0PEN BALL
BEARING 6005 0PEN 315 PSB1046PF0316 GEAR 207/30T 316 PSB1046PF0316 GEAR 207/30T 317 PSB1046PF0316 GEAR 207/30T 318 PRISM EXT RETAINING RING 30MM 319 PSB1046PF0319 SPLINED SHAFT 320 PSB1046PF0320 GEAR 22T 321 PSB1046PF0321 SHAFT SPACER 322 PSB1046PF0322 SPLINED SHAFT 323 PSB1046PF0323 GEAR BOX CASTING 324 PSB1046PF0324 SPACER 325 PSB1046PF0326 GEAR 23T 326 PSB1046PF0326 GEAR 23T 32 | 305 | PSB1046PF0305 | NEEDLE BEARING | | 308 PSBI046PF0308 SPACER 309 PR1IM EXT RETAINING RING 25MM 310 PSBI046PF0310 GEAR 19T/19T 311 PSBI046PF0311 SPLINED 5HAFT 312 PSB1046PF0312 SHAFT COVER 313 PSB1046PF0313 SCOVER GASKET 314 P6005-0PEN BALL BEARING 6005 0PEN 315 PSB1046PF0316 GEAR 20T/30T 316 PSB1046PF0316 GEAR 20T/30T 317 PSB1046PF0317 SPACER 318 PR15M EXT RETAINING RING 30MM 319 PSB1046PF0319 SPLINED 5HAFT 320 PSB1046PF0320 GEAR 22T 321 PSB1046PF0321 SHAFT SPACER 322 PSB1046PF0323 GEARBOX CASTING 323 PSB1046PF0324 SPACER 324 PSB1046PF0325 GEAR 32T 326 PSB1046PF0326 GEAR 23T 327 PSB1046PF0327 GEAR 16T 328 PSB1046PF0328 INT RETAINING RING 47MM 330 | 306 | PCAPO1M | CAP SCREW M6-1 X 16 | | SO9 PRIIM | 307 | PSB1046PF0307 | SPLINED SHAFT SEAT | | 310 | 308 | PSB1046PF0308 | SPACER | | 311 PSB1046PF0311 SPLINED SHAFT 312 PSB1046PF0312 SHAFT COVER 313 PSB1046PF0313 COVER GASKET 314 P6005-0PEN BALL BEARING 6005 0PEN 315 PSB1046PF0315 SPACER 316 PSB1046PF0316 GEAR 207/30T 317 PSB1046PF0317 SPACER 318 PRI5M EXT RETAINING RING 30MM 319 PSB1046PF0319 SPLINED SHAFT 320 PSB1046PF0320 GEAR 22T 321 PSB1046PF0321 SHAFT SPACER 322 PSB1046PF0322 SPLINED SHAFT 322 PSB1046PF0322 GEAR 23T 323 PSB1046PF0322 GEAR BOX CASTING 324 PSB1046PF0324 SPACER 325 PSB1046PF0326 GEAR 23T 326 PSB1046PF0327 GEAR 16T 328 PSB1046PF0328 SPACER 329 PR25M INT RETAINING RING 47MM 330 PSB1046PF0332 SPACER 332 PSB1046PF | 309 | PR11M | EXT RETAINING RING 25MM | | 312 PSB1046PF0312 SHAFT COVER 313 PSB1046PF0313 COVER GASKET 314 P6005-0PEN BALL BEARING 6005 0PEN 315 PSB1046PF0315 SPACER 316 PSB1046PF0316 GEAR 20T/30T 317 PSB1046PF0317 SPACER 318 PRISM EXT RETAINING RING 30MM 319 PSB1046PF0319 SPLINED SHAFT 320 PSB1046PF0320 GEAR 22T 321 PSB1046PF0321 SHAFT SPACER 322 PSB1046PF0322 SPLINED SHAFT 322 PSB1046PF0322 SPLINED SHAFT 323 PSB1046PF0322 SPLINED SHAFT 324 PSB1046PF0324 SPACER 325 PSB1046PF0324 SPACER 326 PSB1046PF0326 GEAR 23T 327 PSB1046PF0327 GEAR 16T 328 PSB1046PF0328 SPACER 329 PR25M INT RETAINING RING 47MM 330 P6204-0PEN BALL BEARING 6204-0PEN 331 P | 310 | PSB1046PF0310 | GEAR 19T/19T | | 313 PSB1046PF0313 COVER GASKET 314 P6005-0PEN BALL BEARING 6005 0PEN 315 PSB1046PF0315 SPACER 316 PSB1046PF0316 GEAR 20T/30T 317 PSB1046PF0317 SPACER 318 PRI5M EXT RETAINING RING 30MM 319 PSB1046PF0319 SPLINED SHAFT 320 PSB1046PF0320 GEAR 22T 321 PSB1046PF0321 SHAFT SPACER 322 PSB1046PF0322 SPLINED SHAFT 324 PSB1046PF0322 GEARBOX CASTING 324 PSB1046PF0323 GEARBOX CASTING 325 PSB1046PF0324 SPACER 325 PSB1046PF0325 GEAR 32T 326 PSB1046PF0325 GEAR 32T 327 PSB1046PF0326 GEAR 23T 328 PSB1046PF0327 GEAR 16T 328 PSB1046PF0328 SPACER 329 PR25M INT RETAINING RING 47MM 330 P6204-0PEN BALL BEARING 6204-0PEN 331 PSB1046PF0331 SPACER 332 PSB1046PF0332 SHAFT CLUTCH 333 PR09M EXT RETAINING RING 20MM 237 PSB1046PF0336 GEAR 22T 337 PSB1046PF0336 GEAR 22T 337 PSB1046PF0336 GEAR 22T 338 PSB1046PF0337 GEAR 16T 338 PSB1046PF0338 GEAR 22T 339 PSB1046PF0338 GEAR 22T 339 PSB1046PF0339 SPACER 340 PSB1046PF0349 GEAR 24T 341 PSB1046PF0349 SPACER 342 PSB1046PF0344 GEAR 24T 343 PSB1046PF0345 SPACER 344 PSB1046PF0346 GEAR 24T 345 PSB1046PF0346 GEAR 24T 346 PSB1046PF0346 GEAR 24T 347 PSB1046PF0346 GEAR 24T 348 349 PSB1046PF0346 GEAR 24T 349 PSB1046PF0346 GEAR 26T 340 PSB1046PF0346 GEAR 24T 349 PSB1046PF0346 GEAR 26T 340 PSB1046PF0346 GEAR 24T 349 PSB1046PF0346 GEAR 26T 350 PSB1046PF0346 GEAR 26T 350 PSB1046PF0346 GEAR 26T 350 PSB1046PF0346 GEAR 26T | 311 | PSB1046PF0311 | SPLINED SHAFT | | 314 P6005-0PEN BALL BEARING 6005 0PEN 315 P9B1046PF0315 SPACER 316 P9B1046PF0316 GEAR 20T/30T 317 P9B1046PF0317 SPACER 318 PRI5M EXT RETAINING RING 30MM 319 P9B1046PF0319 SPLINED SHAFT 320 P9B1046PF0320 GEAR 22T 321 PSB1046PF0321 SHAFT SPACER 322 PSB1046PF0322 SPLINED SHAFT 323 PSB1046PF0323 GEARBOX CASTING 324 PSB1046PF0324 SPACER 325 PSB1046PF0325 GEAR 32T 326 PSB1046PF0326 GEAR 23T 327 PSB1046PF0327 GEAR 16T 328 PSB1046PF0328 SPACER 329 PR25M INT RETAINING RING 47MM 330 P6204-0PEN BALL BEARING 6204-0PEN 331 PSB1046PF0331 SPACER 332 PSB1046PF0331 SPACER 333 PRSD1046PF0332 SHAFT CLUTCH 333 PSB1046P | 312 | PSB1046PF0312 | SHAFT COVER | | 315 PSB1046PF0315 SPACER 316 PSB1046PF0316 GEAR 20T/30T 317 PSB1046PF0317 SPACER 318 PRI5M EXT RETAINING RING 30MM 319 PSB1046PF0319 SPLINED SHAFT 320 PSB1046PF0320 GEAR 22T 321 PSB1046PF0321 SHAFT SPACER 322 PSB1046PF0322 SPLINED SHAFT 323 PSB1046PF0323 GEARBOX CASTING 324 PSB1046PF0324 SPACER 325 PSB1046PF0325 GEAR 32T 326 PSB1046PF0326 GEAR 23T 327 PSB1046PF0327 GEAR 16T 328 PSB1046PF0328 SPACER 329 PR25M INT RETAINING RING 47MM 330 P6204-OPEN BALL BEARING 6204-OPEN 331 PSB1046PF0331 SPACER 332 PSB1046PF0332 SHAFT CLUTCH 333 PRO9M EXT RETAINING RING 20MM 334 PSB1046PF0334 COMBO GEAR 351/35T 335 P | 313 | PSB1046PF0313 | COVER GASKET | | 316 PSB104GPF0316 GEAR 20T/30T 317 PSB104GPF0317 SPACER 318 PRI5M EXT RETAINING RING 30MM 319 PSB104GPF0319 SPLINED SHAFT 320 PSB104GPF0320 GEAR 22T 321 PSB104GPF0321 SHAFT SPACER 322 PSB104GPF0322 SPLINED SHAFT 323 PSB104GPF0323 GEARBOX CASTING 324 PSB104GPF0324 SPACER 325 PSB104GPF0325 GEAR 32T 326 PSB104GPF0326 GEAR 23T 327 PSB104GPF0327 GEAR 16T 328 PSB104GPF0328 SPACER 329 PR25M INT RETAINING RING 47MM 330 P6204-0PEN BALL BEARING 6204-0PEN 331 PSB104GPF0333 SPACER 332 PSB104GPF0331 SPACER 333 PRO9M EXT RETAINING RING 20MM 334 PSB104GPF0334 COMBO GEAR 35T/35T 335 PSB104GPF0334 COMBO GEAR 35T/35T 336 | 314 | P6005-0PEN | BALL BEARING 6005 OPEN | | 317 PSB1046PF0317 SPACER 318 PRI5M EXT RETAINING RING 30MM 319 PSB1046PF0319 SPLINED SHAFT 320 PSB1046PF0320 GEAR 22T 321 PSB1046PF0321 SHAFT SPACER 322 PSB1046PF0322 SPLINED SHAFT 323 PSB1046PF0323 GEARBOX CASTING 324 PSB1046PF0324 SPACER 325 PSB1046PF0325 GEAR 32T 326 PSB1046PF0326 GEAR 23T 327 PSB1046PF0327 GEAR 16T 328 PSB1046PF0328 SPACER 329 PR25M INT RETAINING RING 47MM 330 P6204-0PEN BALL BEARING 6204-0PEN 331 PSB1046PF0331 SPACER 332 PSB1046PF0332 SHAFT CLUTCH 333 PRO9M EXT RETAINING RING 20MM 334 PSB1046PF0334 COMBO GEAR 35T/35T 335 PSB1046PF0335 SPACER 336 PSB1046PF0336 GEAR 22T 337 PSB10 | 315 | PSB1046PF0315 | SPACER | | 318 PRI5M EXT RETAINING RING 30MM 319 PSBI046PF0319 SPLINED SHAFT 320 PSBI046PF0320 GEAR 22T 321 PSBI046PF0321 SHAFT SPACER 322 PSBI046PF0322 SPLINED SHAFT 323 PSBI046PF0323 GEARBOX CASTING 324 PSBI046PF0324 SPACER 325 PSBI046PF0325 GEAR 32T 326 PSBI046PF0326 GEAR 23T 327 PSBI046PF0327 GEAR 16T 328 PSBI046PF0328 SPACER 329 PR25M INT RETAINING RING 47MM 330 P6204-0PEN BALL BEARING 6204-0PEN 331 PSB1046PF0328 SPACER 332 PSB1046PF0331 SPACER 333 PROPM EXT RETAINING RING 47MM 334 PSB1046PF0332 SHAFT CLUTCH 335 PSB1046PF0333 SPACER 336 PSB1046PF0334 COMBO GEAR 35T/35T 337 PSB1046PF03336 GEAR 22T 338 PSB1 | 316 | PSB1046PF0316 | GEAR 20T/30T | | 319 PSB1046PF0319 SPLINED SHAFT 320 PSB1046PF0320 GEAR 22T 321 PSB1046PF0321 SHAFT SPACER 322 PSB1046PF0322 SPLINED SHAFT 323 PSB1046PF0323 GEARBOX CASTING 324 PSB1046PF0324 SPACER 325 PSB1046PF0325 GEAR 32T 326 PSB1046PF0326 GEAR 23T 327 PSB1046PF0327 GEAR 16T 328 PSB1046PF0328 SPACER 329 PR25M INT RETAINING RING 47MM 330 P6204-0PEN BALL BEARING 6204-0PEN 331 PSB1046PF0328 SPACER 332 PSB1046PF0331 SPACER 333 PROJUM EXT RETAINING RING 47MM 334 PSB1046PF0332 SHAFT CLUTCH 335 PSB1046PF0332 SHAFT CLUTCH 336 PSB1046PF0334 COMBO GEAR 351/35T 335 PSB1046PF0335 SPACER 336 PSB1046PF0336 GEAR 22T 337 PSB1046 | 317 | PSB1046PF0317 | SPACER | | 320 PSB1046PF0320 GEAR 22T 321 PSB1046PF0321 SHAFT SPACER 322 PSB1046PF0322 SPLINED SHAFT 323 PSB1046PF0323 GEARBOX CASTING 324 PSB1046PF0324 SPACER 325 PSB1046PF0325 GEAR 32T 326 PSB1046PF0326 GEAR 23T 327 PSB1046PF0327 GEAR 16T 328 PSB1046PF0328 SPACER 329 PR25M INT RETAINING RING 47MM 330 P6204-0PEN BALL BEARING 6204-0PEN 331 PSB1046PF0331 SPACER 332 PSB1046PF0332 SHAFT CLUTCH 333 PR09M EXT RETAINING RING 20MM 334 PSB1046PF0334 COMBO GEAR 35T/35T 335 PSB1046PF0335 SPACER 336 PSB1046PF0336 GEAR 22T 337 PSB1046PF0336 GEAR 22T 337 PSB1046PF0336 GEAR 22T 338 PSB1046PF0338 GEAR 20T 339 PSB1046PF0338 GEAR 20T 339 PSB1046PF0340 GEAR 24T 341 PSB1046PF0340 GEAR 24T 341 PSB1046PF0341 SPACER 342 PSB1046PF0342 GEAR 23T 343 PSB1046PF0343 SPACER 344 PSB1046PF0344 GEAR 27T 345 PSB1046PF0345 SPACER 346 PSB1046PF0346 GEAR 24T 347 PSB1046PF0347 SPACER 348 PSB1046PF0348 GEAR 28T 348 PSB1046PF0349 SPACER | 318 | PR15M | EXT RETAINING RING 30MM | | 321 PSB1046PF0321 SHAFT SPACER 322 PSB1046PF0322 SPLINED SHAFT 323 PSB1046PF0323 GEARBOX CASTING 324 PSB1046PF0324 SPACER 325 PSB1046PF0325 GEAR 32T 326 PSB1046PF0326 GEAR 23T 327 PSB1046PF0327 GEAR 16T 328 PSB1046PF0328 SPACER 329 PR25M INT RETAINING RING 47MM 330 P6204-0PEN BALL BEARING 6204-0PEN 331 PSB1046PF0331 SPACER 332 PSB1046PF0332 SHAFT CLUTCH 333 PR09M EXT RETAINING RING 20MM 334 PSB1046PF0334 COMBO GEAR 35T/35T 335 PSB1046PF0334 GOMBO GEAR 35T/35T 336 PSB1046PF0336 GEAR 22T 337 PSB1046PF0336 GEAR 20T 338 PSB1046PF0337 GEAR 16T 338 PSB1046PF0338 GEAR 24T 340 PSB1046PF0340 GEAR 24T 341 PSB | 319 | PSB1046PF0319 | SPLINED SHAFT | | 322 PSB1046PF0322 SPLINED SHAFT 323 PSB1046PF0323 GEARBOX CASTING 324 PSB1046PF0324 SPACER 325 PSB1046PF0325 GEAR 32T 326 PSB1046PF0326 GEAR 23T 327 PSB1046PF0327 GEAR 16T 328 PSB1046PF0328 SPACER 329 PR25M INT RETAINING RING 47MM 330 P6204-0PEN BALL BEARING 6204-0PEN 331 PSB1046PF0331 SPACER 332 PSB1046PF0331 SPACER 333 PR09M EXT RETAINING RING 20MM 334 PSB1046PF0332 SHAFT CLUTCH 335 PSB1046PF0334 COMBO GEAR 35T/35T 336 PSB1046PF0335 SPACER 336 PSB1046PF0336 GEAR 22T 337 PSB1046PF0337 GEAR 16T 338 PSB1046PF0338 GEAR 20T 339 PSB1046PF0340 GEAR 24T 341 PSB1046PF0341 SPACER 342 PSB1046PF0343 | 320 | PSB1046PF0320 | GEAR 22T | | 323 PSB1046PF0323
GEARBOX CASTING 324 PSB1046PF0324 SPACER 325 PSB1046PF0325 GEAR 32T 326 PSB1046PF0326 GEAR 23T 327 PSB1046PF0327 GEAR 16T 328 PSB1046PF0328 SPACER 329 PR25M INT RETAINING RING 47MM 330 P6204-0PEN BALL BEARING 6204-0PEN 331 PSB1046PF0331 SPACER 332 PSB1046PF0332 SHAFT CLUTCH 333 PR09M EXT RETAINING RING 20MM 334 PSB1046PF0334 COMBO GEAR 35T/35T 335 PSB1046PF0335 SPACER 336 PSB1046PF0336 GEAR 22T 337 PSB1046PF0337 GEAR 16T 338 PSB1046PF0338 GEAR 20T 339 PSB1046PF0339 SPACER 340 PSB1046PF0340 GEAR 24T 341 PSB1046PF0342 GEAR 23T 343 PSB1046PF0344 GEAR 27T 345 PSB1046PF0345 | 321 | PSB1046PF0321 | SHAFT SPACER | | 324 PSB1046PF0324 SPACER 325 PSB1046PF0325 GEAR 32T 326 PSB1046PF0326 GEAR 23T 327 PSB1046PF0327 GEAR 16T 328 PSB1046PF0328 SPACER 329 PR25M INT RETAINING RING 47MM 330 P6204-0PEN BALL BEARING 6204-0PEN 331 PSB1046PF0331 SPACER 332 PSB1046PF0332 SHAFT CLUTCH 333 PR09M EXT RETAINING RING 20MM 334 PSB1046PF0334 COMBO GEAR 35T/35T 335 PSB1046PF0335 SPACER 336 PSB1046PF0336 GEAR 22T 337 PSB1046PF0337 GEAR 16T 338 PSB1046PF0338 GEAR 20T 339 PSB1046PF0338 GEAR 24T 340 PSB1046PF0340 GEAR 24T 341 PSB1046PF0341 SPACER 342 PSB1046PF0342 GEAR 23T 343 PSB1046PF0343 SPACER 344 PSB1046PF0345 SPAC | 322 | PSB1046PF0322 | SPLINED SHAFT | | 325 PSB1046PF0325 GEAR 32T 326 PSB1046PF0326 GEAR 23T 327 PSB1046PF0327 GEAR 16T 328 PSB1046PF0328 SPACER 329 PR25M INT RETAINING RING 47MM 330 P6204-0PEN BALL BEARING 6204-0PEN 331 PSB1046PF0331 SPACER 332 PSB1046PF0332 SHAFT CLUTCH 333 PR09M EXT RETAINING RING 20MM 334 PSB1046PF0334 COMBO GEAR 35T/35T 335 PSB1046PF0335 SPACER 336 PSB1046PF0336 GEAR 22T 337 PSB1046PF0337 GEAR 16T 338 PSB1046PF0338 GEAR 20T 339 PSB1046PF0339 SPACER 340 PSB1046PF0340 GEAR 24T 341 PSB1046PF0341 SPACER 342 PSB1046PF0342 GEAR 23T 343 PSB1046PF0344 GEAR 27T 345 PSB1046PF0345 SPACER 346 PSB1046PF0346 GEAR | 323 | PSB1046PF0323 | GEARBOX CASTING | | 326 PSB1046PF0326 GEAR 23T 327 PSB1046PF0327 GEAR 16T 328 PSB1046PF0328 SPACER 329 PR25M INT RETAINING RING 47MM 330 P6204-0PEN BALL BEARING 6204-0PEN 331 PSB1046PF0331 SPACER 332 PSB1046PF0332 SHAFT CLUTCH 333 PR09M EXT RETAINING RING 20MM 334 PSB1046PF0334 COMBO GEAR 35T/35T 335 PSB1046PF0335 SPACER 336 PSB1046PF0336 GEAR 22T 337 PSB1046PF0336 GEAR 20T 338 PSB1046PF0338 GEAR 20T 339 PSB1046PF0338 GEAR 20T 339 PSB1046PF0340 GEAR 24T 341 PSB1046PF0341 SPACER 342 PSB1046PF0342 GEAR 23T 343 PSB1046PF0343 SPACER 344 PSB1046PF0344 GEAR 27T 345 PSB1046PF0346 GEAR 24T 346 PSB1046PF0346 GE | 324 | PSB1046PF0324 | SPACER | | 327 PSB1046PF0327 GEAR 16T 328 PSB1046PF0328 SPACER 329 PR25M INT RETAINING RING 47MM 330 P6204-0PEN BALL BEARING 6204-0PEN 331 PSB1046PF0331 SPACER 332 PSB1046PF0332 SHAFT CLUTCH 333 PR09M EXT RETAINING RING 20MM 334 PSB1046PF0334 COMBO GEAR 35T/35T 335 PSB1046PF0335 SPACER 336 PSB1046PF0336 GEAR 22T 337 PSB1046PF0336 GEAR 22T 338 PSB1046PF0338 GEAR 20T 339 PSB1046PF0339 SPACER 340 PSB1046PF0340 GEAR 24T 341 PSB1046PF0341 SPACER 342 PSB1046PF0342 GEAR 23T 343 PSB1046PF0343 SPACER 344 PSB1046PF0345 SPACER 345 PSB1046PF0346 GEAR 24T 347 PSB1046PF0348 GEAR 24T 348 PSB1046PF0349 SPACER | 325 | PSB1046PF0325 | GEAR 32T | | 328 PSB1046PF0328 SPACER 329 PR25M INT RETAINING RING 47MM 330 P6204-0PEN BALL BEARING 6204-0PEN 331 PSB1046PF0331 SPACER 332 PSB1046PF0332 SHAFT CLUTCH 333 PRO9M EXT RETAINING RING 20MM 334 PSB1046PF0334 COMBO GEAR 35T/35T 335 PSB1046PF0335 SPACER 336 PSB1046PF0336 GEAR 22T 337 PSB1046PF0337 GEAR 16T 338 PSB1046PF0338 GEAR 20T 339 PSB1046PF0339 SPACER 340 PSB1046PF0340 GEAR 24T 341 PSB1046PF0341 SPACER 342 PSB1046PF0342 GEAR 23T 343 PSB1046PF0343 SPACER 344 PSB1046PF0345 SPACER 345 PSB1046PF0346 GEAR 24T 347 PSB1046PF0346 GEAR 24T 347 PSB1046PF0348 GEAR 28T 348 PSB1046PF0349 SPACER | 326 | PSB1046PF0326 | GEAR 23T | | 329 PR25M INT RETAINING RING 47MM 330 P6204-0PEN BALL BEARING 6204-0PEN 331 PSB1046PF0331 SPACER 332 PSB1046PF0332 SHAFT CLUTCH 333 PRO9M EXT RETAINING RING 20MM 334 PSB1046PF0334 COMBO GEAR 35T/35T 335 PSB1046PF0335 SPACER 336 PSB1046PF0336 GEAR 22T 337 PSB1046PF0337 GEAR 16T 338 PSB1046PF0338 GEAR 20T 339 PSB1046PF0339 SPACER 340 PSB1046PF0340 GEAR 24T 341 PSB1046PF0341 SPACER 342 PSB1046PF0342 GEAR 23T 343 PSB1046PF0343 SPACER 344 PSB1046PF0345 SPACER 345 PSB1046PF0346 GEAR 24T 347 PSB1046PF0346 GEAR 24T 348 PSB1046PF0349 SPACER 349 PSB1046PF0349 SPACER 350 PSB1046PF0350 GEAR 26T | 327 | PSB1046PF0327 | GEAR 16T | | 330 P6204-0PEN BALL BEARING 6204-0PEN 331 PSB1046PF0331 SPACER 332 PSB1046PF0332 SHAFT CLUTCH 333 PR09M EXT RETAINING RING 20MM 334 PSB1046PF0334 COMBO GEAR 35T/35T 335 PSB1046PF0335 SPACER 336 PSB1046PF0336 GEAR 22T 337 PSB1046PF0337 GEAR 16T 338 PSB1046PF0338 GEAR 20T 339 PSB1046PF0339 SPACER 340 PSB1046PF0340 GEAR 24T 341 PSB1046PF0341 SPACER 342 PSB1046PF0342 GEAR 23T 343 PSB1046PF0343 SPACER 344 PSB1046PF0344 GEAR 27T 345 PSB1046PF0346 GEAR 24T 347 PSB1046PF0346 GEAR 24T 348 PSB1046PF0348 GEAR 28T 349 PSB1046PF0349 SPACER 350 PSB1046PF0350 GEAR 26T | 328 | PSB1046PF0328 | SPACER | | 331 P9B1046PF0331 SPACER 332 P9B1046PF0332 SHAFT CLUTCH 333 PRO9M EXT RETAINING RING 20MM 334 P9B1046PF0334 COMBO GEAR 35T/35T 335 P9B1046PF0335 SPACER 336 P9B1046PF0336 GEAR 22T 337 P9B1046PF0337 GEAR 16T 338 P9B1046PF0338 GEAR 20T 339 P9B1046PF0339 SPACER 340 P9B1046PF0340 GEAR 24T 341 P9B1046PF0341 SPACER 342 P9B1046PF0342 GEAR 23T 343 P9B1046PF0343 SPACER 344 P9B1046PF0344 GEAR 27T 345 P9B1046PF0346 GEAR 24T 346 P9B1046PF0346 GEAR 24T 347 P9B1046PF0348 GEAR 28T 348 P9B1046PF0349 SPACER 349 P9B1046PF0349 GEAR 26T | 329 | PR25M | INT RETAINING RING 47MM | | 332 PSB1046PF0332 SHAFT CLUTCH 333 PRO9M EXT RETAINING RING 20MM 334 PSB1046PF0334 COMBO GEAR 35T/35T 335 PSB1046PF0335 SPACER 336 PSB1046PF0336 GEAR 22T 337 PSB1046PF0337 GEAR 16T 338 PSB1046PF0338 GEAR 20T 339 PSB1046PF0339 SPACER 340 PSB1046PF0340 GEAR 24T 341 PSB1046PF0341 SPACER 342 PSB1046PF0342 GEAR 23T 343 PSB1046PF0343 SPACER 344 PSB1046PF0344 GEAR 27T 345 PSB1046PF0346 GEAR 24T 346 PSB1046PF0346 GEAR 24T 347 PSB1046PF0348 GEAR 28T 348 PSB1046PF0349 SPACER 349 PSB1046PF0349 SPACER 350 PSB1046PF0350 GEAR 26T | 330 | P6204-0PEN | BALL BEARING 6204-0PEN | | 333 PRO9M EXT RETAINING RING 20MM 334 PSB1046PF0334 COMB0 GEAR 35T/35T 335 PSB1046PF0335 SPACER 336 PSB1046PF0336 GEAR 22T 337 PSB1046PF0337 GEAR 16T 338 PSB1046PF0338 GEAR 20T 339 PSB1046PF0339 SPACER 340 PSB1046PF0340 GEAR 24T 341 PSB1046PF0341 SPACER 342 PSB1046PF0342 GEAR 23T 343 PSB1046PF0343 SPACER 344 PSB1046PF0344 GEAR 27T 345 PSB1046PF0346 GEAR 24T 346 PSB1046PF0346 GEAR 24T 347 PSB1046PF0348 GEAR 28T 348 PSB1046PF0349 SPACER 349 PSB1046PF0349 SPACER 350 PSB1046PF0350 GEAR 26T | 331 | PSB1046PF0331 | SPACER | | 334 PSB1046PF0334 COMBO GEAR 35T/35T 335 PSB1046PF0335 SPACER 336 PSB1046PF0336 GEAR 22T 337 PSB1046PF0337 GEAR 16T 338 PSB1046PF0338 GEAR 20T 339 PSB1046PF0339 SPACER 340 PSB1046PF0340 GEAR 24T 341 PSB1046PF0341 SPACER 342 PSB1046PF0342 GEAR 23T 343 PSB1046PF0343 SPACER 344 PSB1046PF0344 GEAR 27T 345 PSB1046PF0345 SPACER 346 PSB1046PF0346 GEAR 24T 347 PSB1046PF0346 GEAR 24T 347 PSB1046PF0347 SPACER 348 PSB1046PF0348 GEAR 28T 349 PSB1046PF0349 SPACER 350 PSB1046PF0349 SPACER | 332 | PSB1046PF0332 | SHAFT CLUTCH | | 335 P9B1046PF0335 SPACER 336 P9B1046PF0336 GEAR 22T 337 P9B1046PF0337 GEAR 16T 338 P9B1046PF0338 GEAR 20T 339 P9B1046PF0339 SPACER 340 P9B1046PF0340 GEAR 24T 341 P9B1046PF0341 SPACER 342 P9B1046PF0342 GEAR 23T 343 P9B1046PF0343 SPACER 344 P9B1046PF0344 GEAR 27T 345 P9B1046PF0345 SPACER 346 P9B1046PF0346 GEAR 24T 347 P9B1046PF0346 GEAR 24T 348 P9B1046PF0348 GEAR 28T 349 P9B1046PF0349 SPACER 350 PSB1046PF0350 GEAR 26T | 333 | PRO9M | EXT RETAINING RING 20MM | | 336 PSB1046PF0336 GEAR 22T 337 PSB1046PF0337 GEAR 16T 338 PSB1046PF0338 GEAR 20T 339 PSB1046PF0339 SPACER 340 PSB1046PF0340 GEAR 24T 341 PSB1046PF0341 SPACER 342 PSB1046PF0342 GEAR 23T 343 PSB1046PF0342 GEAR 27T 345 PSB1046PF0344 GEAR 27T 346 PSB1046PF0345 SPACER 347 PSB1046PF0346 GEAR 24T 347 PSB1046PF0346 GEAR 24T 348 PSB1046PF0348 GEAR 28T 349 PSB1046PF0349 SPACER 350 PSB1046PF0349 SPACER | 334 | PSB1046PF0334 | COMBO GEAR 35T/35T | | 337 PSB1046PF0337 GEAR 16T 338 PSB1046PF0338 GEAR 20T 339 PSB1046PF0339 SPACER 340 PSB1046PF0340 GEAR 24T 341 PSB1046PF0341 SPACER 342 PSB1046PF0342 GEAR 23T 343 PSB1046PF0343 SPACER 344 PSB1046PF0344 GEAR 27T 345 PSB1046PF0345 SPACER 346 PSB1046PF0346 GEAR 24T 347 PSB1046PF0346 GEAR 24T 347 PSB1046PF0347 SPACER 348 PSB1046PF0348 GEAR 28T 349 PSB1046PF0349 SPACER 350 PSB1046PF0350 GEAR 26T | 335 | PSB1046PF0335 | SPACER | | 338 PSB1046PF0338 GEAR 20T 339 PSB1046PF0339 SPACER 340 PSB1046PF0340 GEAR 24T 341 PSB1046PF0341 SPACER 342 PSB1046PF0342 GEAR 23T 343 PSB1046PF0343 SPACER 344 PSB1046PF0344 GEAR 27T 345 PSB1046PF0345 SPACER 346 PSB1046PF0346 GEAR 24T 347 PSB1046PF0347 SPACER 348 PSB1046PF0348 GEAR 28T 349 PSB1046PF0349 SPACER 350 PSB1046PF0350 GEAR 26T | 336 | PSB1046PF0336 | GEAR 22T | | 339 PSB1046PF0339 SPACER 340 PSB1046PF0340 GEAR 24T 341 PSB1046PF0341 SPACER 342 PSB1046PF0342 GEAR 23T 343 PSB1046PF0343 SPACER 344 PSB1046PF0344 GEAR 27T 345 PSB1046PF0345 SPACER 346 PSB1046PF0346 GEAR 24T 347 PSB1046PF0347 SPACER 348 PSB1046PF0348 GEAR 28T 349 PSB1046PF0349 SPACER 350 PSB1046PF0350 GEAR 26T | 337 | PSB1046PF0337 | GEAR 16T | | 340 PSB1046PF0340 GEAR 24T 341 PSB1046PF0341 SPACER 342 PSB1046PF0342 GEAR 23T 343 PSB1046PF0343 SPACER 344 PSB1046PF0344 GEAR 27T 345 PSB1046PF0345 SPACER 346 PSB1046PF0346 GEAR 24T 347 PSB1046PF0347 SPACER 348 PSB1046PF0348 GEAR 28T 349 PSB1046PF0349 SPACER 350 PSB1046PF0350 GEAR 26T | 338 | PSB1046PF0338 | GEAR 20T | | 341 P9B1046PF0341 SPACER 342 P9B1046PF0342 GEAR 23T 343 P9B1046PF0343 SPACER 344 PSB1046PF0344 GEAR 27T 345 P9B1046PF0345 SPACER 346 PSB1046PF0346 GEAR 24T 347 PSB1046PF0347 SPACER 348 PSB1046PF0348 GEAR 28T 349 PSB1046PF0349 SPACER 350 PSB1046PF0350 GEAR 26T | 339 | PSB1046PF0339 | SPACER | | 342 PSB1046PF0342 GEAR 23T 343 PSB1046PF0343 SPACER 344 PSB1046PF0344 GEAR 27T 345 PSB1046PF0345 SPACER 346 PSB1046PF0346 GEAR 24T 347 PSB1046PF0347
SPACER 348 PSB1046PF0348 GEAR 28T 349 PSB1046PF0349 SPACER 350 PSB1046PF0350 GEAR 26T | 340 | PSB1046PF0340 | GEAR 24T | | 343 PSB1046PF0343 SPACER 344 PSB1046PF0344 GEAR 27T 345 PSB1046PF0345 SPACER 346 PSB1046PF0346 GEAR 24T 347 PSB1046PF0347 SPACER 348 PSB1046PF0348 GEAR 28T 349 PSB1046PF0349 SPACER 350 PSB1046PF0350 GEAR 26T | 341 | PSB1046PF0341 | SPACER | | 344 PSB1046PF0344 GEAR 27T 345 PSB1046PF0345 SPACER 346 PSB1046PF0346 GEAR 24T 347 PSB1046PF0347 SPACER 348 PSB1046PF0348 GEAR 28T 349 PSB1046PF0349 SPACER 350 PSB1046PF0350 GEAR 26T | 342 | PSB1046PF0342 | GEAR 23T | | 345 PSB1046PF0345 SPACER 346 PSB1046PF0346 GEAR 24T 347 PSB1046PF0347 SPACER 348 PSB1046PF0348 GEAR 28T 349 PSB1046PF0349 SPACER 350 PSB1046PF0350 GEAR 26T | 343 | PSB1046PF0343 | SPACER | | 346 PSB1046PF0346 GEAR 24T 347 PSB1046PF0347 SPACER 348 PSB1046PF0348 GEAR 28T 349 PSB1046PF0349 SPACER 350 PSB1046PF0350 GEAR 26T | 344 | PSB1046PF0344 | GEAR 27T | | 347 PSB1046PF0347 SPACER 348 PSB1046PF0348 GEAR 28T 349 PSB1046PF0349 SPACER 350 PSB1046PF0350 GEAR 26T | 345 | PSB1046PF0345 | SPACER | | 348 PSB1046PF0348 GEAR 28T 349 PSB1046PF0349 SPACER 350 PSB1046PF0350 GEAR 26T | 346 | PSB1046PF0346 | GEAR 24T | | 349 PSB1046PF0349 SPACER
350 PSB1046PF0350 GEAR 26T | 347 | PSB1046PF0347 | SPACER | | 350 PSB1046PF0350 GEAR 26T | 348 | PSB1046PF0348 | GEAR 28T | | | 349 | PSB1046PF0349 | SPACER | | 351 PSB1046PF0351 GEAR 32T | 350 | PSB1046PF0350 | GEAR 26T | | | 351 | PSB1046PF0351 | GEAR 32T | | REF | PART# | DESCRIPTION | |-----|---------------|------------------------------| | 352 | PSB1046PF0352 | SHAFT NUT | | 353 | PSS02M | SET SCREW M6-1 X 6 | | 354 | PR10M | EXT RETAINING RING 22MM | | 355 | PSB1046PF0355 | COMBO GEAR 45T/18T | | 356 | PSB1046PF0356 | GEAR 22T | | 357 | PSB1046PF0357 | GEAR 22T | | 358 | PSB1046PF0358 | GEAR 33T | | 359 | PSB1046PF0359 | GEAR 22T | | 360 | PSB1046PF0360 | SPACER | | 361 | PSB1046PF0361 | GEAR 36T | | 362 | PSB1046PF0362 | SHAFT SEAT | | 363 | PSB1046PF0363 | OIL SEAL 304005 | | 364 | PSB1046PF0364 | SPACER | | 365 | PSB1046PF0365 | SPLINED SHAFT | | 366 | PSB1046PF0366 | SHAFT SEAT | | 367 | PSB1046PF0367 | SPACER | | 368 | PSB1046PF0368 | SHAFT | | 369 | PSB1046PF0369 | PIN 6 X 36 | | 370 | P6003-0PEN | BALL BEARING 6003 OPEN | | 371 | PR18M | EXT RETAINING RING 17MM | | 372 | PSB1046PF0372 | BEARING SEAT | | 373 | PLW03M | LOCK WASHER 6MM | | 374 | PSB1046PF0374 | PLATE | | 375 | PSB1046PF0375 | REVERSE STOP PLATE | | 376 | PSB1046PF0376 | UPPER/LOWER PLATE | | 377 | PSTB001 | STEEL BALL 1/4 | | 378 | PSB1046PF0378 | COMPRESSION SPRING | | 380 | PRP24M | ROLL PIN 5 X 16 | | 381 | PSB1046PF0381 | BOTTOM SHIFT FORK SUPPORT | | 382 | PRP24M | ROLL PIN 5 X 16 | | 383 | PSB1046PF0383 | BOTTOM SHIFT FORK | | 384 | PCAP15M | CAP SCREW M58 X 20 | | 385 | PSB1046PF0385 | PARTITION | | 386 | PSB1046PF0386 | LOWER-MID SHIFT FORK SUPPORT | | 387 | PSB1046PF0387 | LOWER-MID SHIFT FORK | | 388 | PSB1046PF0388 | UPPER-MID SHIFT FORK SUPPORT | | 389 | PSB1046PF0389 | UPPER-MID SHIFT FORK | | 390 | PSB1046PF0390 | TOP SHIFT FORK SUPPORT | | 391 | PSB1046PF0391 | TOP SHIFT FORK | | 392 | PSB1046PF0392 | SPACER | | 393 | PSB1046PF0393 | PARTITION NUT | | 394 | PSB1046PF0394 | PARTITION PLATE | | 395 | PSB1046PF0395 | GEARBOX GASKET | | 396 | PSB1046PF0396 | SHIFT GATE | | 397 | PSB1046PF0397 | SELECTOR LEVER RETAINER | | 398 | P0RG035 | 0-RING 3.1 X 34.4 G35 | | 399 | PSB1046PF0399 | SELECTOR LEVER | | 400 | PSB1046PF0400 | COMPRESSION SPRING | | 401 | PORGO40 | 0-RING 39.4 X 3.1 G40 | | 402 | PSB1046PF0402 | SELECTOR LEVER BASE | | | | 1 | ## **Gearbox Parts List** | REF | PART# | DESCRIPTION | |-----|---------------|-------------------------------| | 403 | PSB1046PF0403 | SELECTOR LEVER PIN | | 404 | PSB1046PF0404 | LEVER CAP | | 405 | PSB1046PF0405 | LEVER RETAINING FLAT WASHER | | 406 | PSB1046PF0406 | SHIFT LEVER | | 407 | PSB1046PF0407 | SIGHT GLASS | | 408 | PSB1046PF0408 | GEARBOX COVER (SB1046PF-48PF) | | 408 | PSB1056F0408 | GEARBOX COVER (SB1056F-58F) | | 409 | PSB1046PF0409 | COUPLER 3/4" NPT | | 410 | PSB1046PF0410 | ELBOW 3/4" NPT | | 411 | PSB1046PF0411 | OIL FILL PLUG 3/4" NPT | | 412 | PK05M | KEY 4 X 4 X 10 | | 413 | PSB1046PF0413 | SELECTOR SHAFT | | 414 | PSB1046PF0414 | SELECTOR BAR | | 415 | PSB1046PF0415 | SHIFT KNUCKLE | | 416 | PSB1046PF0416 | COMPRESSION SPRING | | 417 | PSS20M | SET SCREW M8-1.25 X 8 | | REF | PART# | DESCRIPTION | |-----|---------------|---------------------------| | 418 | PSB1046PF0418 | SHIFT FORK | | 419 | PCAPO2M | CAP SCREW M6-1 X 20 | | 420 | PRP24M | ROLL PIN 5 X 16 | | 421 | PW03M | FLAT WASHER 6MM | | 422 | PSS02M | SET SCREW M6-1 X 6 | | 423 | PRPO4M | ROLL PIN 4 X 24 | | 424 | PSB1046PF0424 | SHIFT TAB | | 425 | PSB1046PF0425 | SHIFT FORK | | 426 | PSB1046PF0426 | SQUARE HEAD PLUG 1/2" NPT | | 427 | PSB1046PF0427 | PIPE ELBOW 1/2" NPT | | 428 | PSB1046PF0428 | COUPLER 1/2" NPT | | 429 | PCAP26M | CAP SCREW M6-1 X 12 | | 430 | PCAP29M | CAP SCREW M6-1 X 40 | | 431 | PCAP38M | CAP SCREW M58 X 25 | | 432 | PCAPO1M | CAP SCREW M6-1 X 16 | # **Apron 1** # Apron 2 # **Apron Parts List** | REF | PART# | DESCRIPTION | |-----|---------------|-------------------------------| | 501 | PSB1046PF0501 | HANDLE CAP SCREW | | 502 | PSB1046PF0502 | HANDLE | | 503 | PSS12M | SET SCREW M6-1 X 25 | | 504 | PSB1046PF0504 | HANDWHEEL CENTER CAP | | 505 | PSB1046PF0505 | HANDWHEEL | | 506 | PSTB001 | STEEL BALL 1/4 | | 507 | PSB1046PF0507 | COMPRESSION SPRING | | 508 | PSB1046PF0508 | GRADUATED DIAL | | 509 | PFH05M | FLAT HD SCR M58 X 12 | | 510 | PSB1046PF0510 | GRADUATED DIAL BASE | | 511 | PSB1046PF0511 | WOODRUFF KEY 19 X 5 | | 512 | PSB1046PF0512 | GEAR SHAFT | | 513 | PSB1046PF0513 | PLUG | | 514 | PRO7M | EXT RETAINING RING 18MM | | 515 | PSB1046PF0515 | SPACER | | 516 | PSB1046PF0516 | NEEDLE ROLLER BEARING 18/20 | | 517 | PSB1046PF0517 | SPACER | | 518 | PR11M | EXT RETAINING RING 25MM | | 519 | PSB1046PF0519 | GEAR 56T | | 520 | PSB1046PF0520 | NEEDLE ROLLER BEARING 28/20 | | 521 | PSB1046PF0521 | NOTCHED SPACER | | 522 | PSB1046PF0522 | GEAR SHAFT | | 523 | PRIVO18M | STEEL FLUTED RIVET 2.8 X 10 | | 524 | PSB1046PF0524 | KNOB LABEL | | 525 | PSB1046PF0525 | SHAFT | | 526 | PSB1046PF0526 | GEAR SPACER | | 527 | PSB1046PF0527 | COMBO GEAR 15T/33T | | 528 | PSB1046PF0528 | GEAR SPACER | | 529 | PSB1046PF0529 | APRON PIN | | 530 | PSB1046PF0530 | SIGHT GLASS | | 531 | PSB1046PF0531 | SHAFT | | 532 | PSB1046PF0532 | NEEDLE BEARING TLA1616 | | 533 | PSB1046PF0533 | GEAR SHAFT 26T | | 534 | PSB1046PF0534 | NEEDLE ROLLER BEARING TLA3016 | | 535 | PSB1046PF0535 | GEAR 24T | | 536 | PSB1046PF0536 | GEAR 24T | | 537 | PSB1046PF0537 | SPLINED GEAR | | 538 | PR15M | EXT RETAINING RING 30MM | | 539 | PSB1046PF0539 | COLLAR | | 540 | PSB1046PF0540 | SLOTTED DOWEL PIN | | 541 | PSB1046PF0541 | INDICATOR PLATE | | 542 | PSB1046PF0542 | SHIFT SHAFT | | 543 | PSB1046PF0543 | GEAR 24T | | 545 | PSB1046PF0545 | GEAR SHAFT | | 546 | PSB1046PF0546 | GEAR 24T | | 547 | PSB1046PF0547 | HANDLE ASSEMBLY | | 548 | PORPO21 | 0-RING 20.8 X 2.4 P21 | | 549 | PSB1046PF0549 | SHIFT KNUCKLE | | 550 | PR81M | EXT RETAINING RING 21MM | | 551 | PFH38M | FLAT HD SCR M6-1 X 16 | | 552 | PSB1046PF0552 | LEVER HUB FLAT WASHER | | REF | PART# | DESCRIPTION | |-----|---------------|-----------------------------| | 553 | PSS20M | SET SCREW M8-1.25 X 8 | | 554 | PSB1046PF0554 | COMPRESSION SPRING | | 555 | PSB1046PF0555 | HALF-NUT LEVER ASSEMBLY | | 557 | PSB1046PF0557 | 0-RIN <i>G G-</i> 25 | | 558 | PSS03M | SET SCREW M6-1 X 8 | | 559 | PSB1046PF0559 | COMPRESSION SPRING | | 560 | PSB1046PF0560 | WOODRUFF KEY 16 X 5MM | | 561 | PSB1046PF0561 | CAM SHAFT | | 562 | PSS84M | SET SCREW M10-1.5 X 35 | | 563 | PSS30M | SET SCREW M10-1.5 X 10 | | 564 | PSB1046PF0564 | APRON CASTING | | 565 | PSS75M | SET SCREW M10-1.5 X 16 | | 566 | PSB1046PF0566 | COMPRESSION SPRING | | 567 | PSTB003 | STEEL BALL 3/8" | | 568 | PCAP26M | CAP SCREW M6-1 X 12 | | 569 | PSB1046PF0569 | HALF-NUT GIB | | 570 | PCAPO1M | CAP SCREW M6-1 X 16 | | 571 | PCAPO7M | CAP SCREW M6-1 X 30 | | 572 | PSB1046PF0572 | DOWEL PIN | | 573 | PSB1046PF0573 | HALF-NUT PLATE | | 574 | PSB1046PF0574 | HALF-NUT ASSEMBLY | | 575 | PCAP07M | CAP SCREW M6-1 X 30 | | 576 | P5528M | SET SCREW M6-1 X 30 | | 577 | PSB1046PF0577 | PLUG 1/4" NPT | | 578 | PSB1046PF0578 | APRON TOP PLATE | | 579 | PSB1046PF0579 | OIL SEAL 30 X 40 X 5 | | 580 | PSB1046PF0580 | SLEEVE | | 581 | PORGO45 | 0-RING 44.4 X 3.1 G45 | | 582 | PSB1046PF0582 | THRUST BEARING 3047-NTB/AS2 | | 583 | PSB1046PF0583 | GEARED PINION SHAFT 18T | | 584 | PSB1046PF0584 | CASTING PLUG | | 585 | PSB1046PF0585 | COLLAR | | 586 | PCAP26M | CAP SCREW M6-1 X 12 | | 587 | PRP76M | ROLL PIN 4 X 16 | | 588 | PSB1046PF0588 | BRACKET SHAFT | | 589 | PCAP38M | CAP SCREW M58 X 25 | | 590 | PSB1046PF0590 | SLOTTED DOWEL PIN | | 591 | PSB1046PF0591 | CAPTIVE PIN | | 592 | PSB1046PF0592 | EXTENSION SPRING | | 593 | PSS91M | SET SCREW M6-1 X 14 | | 594 | PLN03M | LOCK NUT M6-1 | | 595 | PSB1046PF0595 | BRACKET | | 596 | PK33M | KEY 5 X 5 X 45 | | 597 | PSB1046PF0597 | WORM SHAFT | | 598 | PSB1046PF0598 | WORM GEAR | | 599 | PSB1046PF0599 | CLUTCH | | 600 | PSB1046PF0600 | CLUTCH GEAR 36T | | 601 | PSB1046PF0601 | PIVOT ARM | | 602 | PSB1046PF0602 | SPRING CUP | | 603 | PSB1046PF0603 | COMPRESSION SPRING | # **Apron Parts List** | REF | PART# | DESCRIPTION | |-----|---------------|-----------------------------| | 604 | PSB1046PF0604 | SPRING CUP | | 605 | PRP04M | ROLL PIN 4 X 24 | | 606 | PSB1046PF0606 | TRIP ROD | | 607 | PSB1046PF0607 | TRIP ROD SPACER | | 608 | PSB1046PF0608 | COMPRESSION SPRING | | 609 | PSB1046PF0609 | TRIP ROD OUTER SPACER | | 610 | PLN09M | LOCK NUT M12-1.75 | | 611 | PSB1046PF0611 | THRUST BEARING NTB1528/AS2 | | 612 | PSB1046PF0612 | FLANGED BEARING | | 613 | PSB1046PF0613 | COMPRESSION PLATE | | 614 | PSB1046PF0614 | DOWEL PIN | | 615 | PRP05M | ROLL PIN 5 X 30 | | 616 | PSB1046PF0616 | WORM SHAFT
FLAT WASHER 10MM | | 617 | PLN05M | LOCK NUT M10-1.5 | | 618 | PSB1046PF0618 | DOMED NUT | | 619 | PRPO4M | ROLL PIN 4 X 24 | | REF | PART# | DESCRIPTION | |-----|---------------|-------------------------------| | 620 | PRP02M | ROLL PIN 3 X 16 | | 621 | PSB1046PF0621 | THREADED SHAFT | | 622 | PSB1046PF0622 | COMPRESSION PLATE FLAT WASHER | | 623 | PRP105M | ROLL PIN 3 X 24 | | 624 | PSB1046PF0624 | COUPLER | | 625 | PSB1046PF0625 | STEPPED SHAFT | | 626 | P0RP018 | 0-RING 17.8 X 2.4 P18 | | 627 | PSB1046PF0627 | SHAFT END CAP | | 628 | PFH74M | FLAT HD CAP SCR M58 X 16 | | 629 | PRP10M | ROLL PIN 5 X 36 | | 630 | PSB1046PF0630 | KNURLED KNOB | | 631 | PSB1046PF0631 | PLUNGER | | 632 | PSB1046PF0632 | COMPRESSION SPRING | | 633 | PSS15M | SET SCREW M12-1.75 X 12 | | 634 | PSB1046PF0634 | SHAFT SLEEVE | ## **End Gears** | REF | PART# | DESCRIPTION | |-----|---------------|---------------------------| | 701 | РВ25М | HEX BOLT M12-1.75 X 25 | | 702 | PSB1046PF0702 | GEAR FLAT WASHER | | 703 | PSB1046PF0703 | GEAR 24T (SB1046PF-48PF) | | 703 | PSB1056F0703 | GEAR 24T (SB1056F-58F) | | 704 | PSB1046PF0704 | PIVOT ARM (SB1046PF-48PF) | | 704 | PSB1056F0704 | PIVOT ARM (SB1056F-58F) | | 705 | PK166M | KEY 7 X 7 X 15 | | 706 | PN32M | HEX NUT M14-2 | | 707 | PSB1046PF0707 | GEAR FLAT WASHER | | 708 | PR25M | INT RETAINING RING 47MM | | 709 | P6005ZZ | BALL BEARING 6005ZZ | | REF | PART# | DESCRIPTION | |-----|---------------|------------------------------| | 710 | PSB1046PF0710 | SPACER | | 711 | PSB1046PF0711 | GEAR 44T/56T (SB1046PF-48PF) | | 711 | PSB1056F0711 | GEAR 44T/56T (SB1056F-58F) | | 712 | PSB1046PF0712 | SHAFT SLEEVE | | 713 | PSB1046PF0713 | T-HEAD SHAFT | | 714 | PK109M | KEY 7 X 7 X 35 | | 715 | PSB1046PF0715 | STUD-FT M14-2 X 110 | | 716 | PSB1046PF0716 | GEAR 57T (SB1046PF-48PF) | | 716 | PSB1056F0716 | GEAR 57T (SB1056F-58F) | | 717 | PSB1046PF0717 | GEAR SPACER | **Motor & Headstock Oil System** # **Motor & Headstock Oil System Parts List** | REF | PART# | DESCRIPTION | |-------|-----------------|------------------------------| | 801 | PSB1046PF0801 | OIL H0SE 5/8" | | 802 | PSB1046PF0802 | OIL HOSE FITTING 5/8" NPT | | 803 | PSB1046PF0803 | EXTENSION SPRING | | 804 | PSB1046PF0804 | RETAINING SCREW | | 805 | PSB1046PF0805 | PUMP HOUSING | | 806 | PSB1046PF0806 | PUMP IMPELLER | | 807 | PR05M | EXT RETAINING RING 15MM | | 808 | PW01M | FLAT WASHER 8MM | | 809 | PN03M | HEX NUT M8-1.25 | | 810 | РСАР79М | CAP SCREW M58 X 35 | | 811 | PSB1046PF0811 | OIL PUMP BACK PLATE | | 812 | PFH02M | FLAT HD SCR M6-1 X 12 | | 813 | РВН538М | BUTTON HD CAP SCR M58 X 8 | | 814 | PSB1046PF0814 | OIL TANK | | 815 | PSB1046PF0815 | OIL TANK DRAIN PIPE | | 816 | PSB1046PF0816 | IDLER ARM | | 817 | PR21M | INT RETAINING RING 35MM | | 818 | P6202ZZ | BALL BEARING 6202ZZ | | 819 | PSB1046PF0819 | SPACER | | 820 | PSB1046PF0820 | OIL SEAL 18 X 37 X 5MM | | 821 | PSB1046PF0821 | IDLER PULLEY | | 822 | PVA38 | V-BELT A38 | | 823 | PSB1046PF0823 | PUMP PULLEY | | 824 | PSB1046PF0824 | PUMP INPUT SHAFT | | 825 | PK29M | KEY4X4X8 | | 826 | PK07M | KEY 6 X 6 X 20 | | 827 | PR29M | INT RETAINING RING 32MM | | 828 | PSB1046PF0828 | IDLER PULLEY SHAFT | | 829 | P6201ZZ | BALL BEARING 6201ZZ | | 830 | PRO3M | EXT RETAINING RING 12MM | | 831 | PSB1046PF0831 | MOTOR MOUNT SHAFT 32 X 625MM | | 832 | PSB1046PF0832 | MOTOR 15HP 44OV 3PH 6OHZ | | 832-1 | PSB1046PF0832-1 | MOTOR FAN COVER | | 832-2 | PSB1046PF0832-2 | MOTOR FAN | | 832-3 | PSB1046PF0832-3 | MOTOR JUNCTION BOX | | REF | PART# | DESCRIPTION | |-------|-----------------|--------------------------------| | 832-4 | PSB1046PF0832-4 | FRONT MOTOR BEARING | | 832-5 | PSB1046PF0832-5 | REAR MOTOR BEARING | | 833 | PVA79 | V-BELT A79 (SB1046PF-48PF) | | 833 | PVA75 | V-BELT A75 (SB1056F-58F) | | 834 | PSB1046PF0834 | MOTOR PULLEY | | 835 | PSB1046PF0835 | PULLEY FLAT WASHER 12 X 45 X 5 | | 836 | PCAP64M | CAP SCREW M10-1.5 X 25 | | 837 | PN13M | HEX NUT M16-2 | | 838 | PSB1046PF0838 | THREADED ROD M16-2 | | 839 | PSB1046PF0839 | FLAT WASHER 16.5 X 40 | | 840 | PSB1046PF0840 | RUBBER SPACER | | 841 | PB31M | HEX BOLT M10-1.5 X 40 | | 842 | PWO4M | FLAT WASHER 10MM | | 843 | PSB1046PF0843 | MOTOR MOUNT PLATE | | 844 | PCAP64M | CAP SCREW M10-1.5 X 25 | | 845 | PNO2M | HEX NUT M10-1.5 | | 846 | PSB1046PF0846 | REAR MOTOR ACCESS PLATE | | 847 | РВН509М | BUTTON HD CAP SCR M6-1 X 12 | | 848 | PSB1046PF0848 | ELECTRICAL BOX ASSEMBLY | | 849 | PSB1046PF0849 | JUNCTION BOX | | 850 | PCAPO6M | CAP SCREW M6-1 X 25 | | 851 | PBHS38M | BUTTON HD CAP SCR M58 X 8 | | 852 | PNO2M | HEX NUT M10-1.5 | | 853 | PSB1046PF0853 | PLUG 1/4" NPT | | 854 | PCAP11M | CAP SCREW M8-1.25 X 16 | | 855 | PSB1046PF0855 | HOSE COUPLER 1" NPT | | 856 | PSB1046PF0856 | ELBOW 1" NPT | | 857 | PSB1046PF0857 | HOSE CLAMP 3/4" | | 858 | PSB1046PF0858 | HOSE CONNECTOR 1" X 75MM | | 859 | PSB1046PF0859 | OIL RETURN HOSE | | 860 | PSB1046PF0860 | HOSE CLIP | | 861 | PSB1046PF0861 | HOSE CLIP | | 862 | PNO4M | HEX NUT M47 | | 863 | PSB1042PF1160 | END COVER SAFETY SWITCH TM1307 | | 864 | PS65M | PHLP HD SCR M47 X 40 | ## Saddle 1 # Saddle 2 ## **Saddle Parts List** | REF | PART# | DESCRIPTION | |-----|---------------|---------------------------------| | 901 | PSB1046PF0901 | GIB ADJUST SCREW | | 902 | PSB1046PF0902 | CROSS SLIDE | | 903 | PSB1046PF0903 | COMPOUND REST PIVOT 25 X 40 | | 904 | PSB1046PF0904 | COMPOUND REST T-BOLT | | 905 | PSB1046PF0905 | CROSS SLIDE GIB | | 906 | PSB1046PF0906 | CROSS SLIDE WAY WIPER | | 907 | PSB1046PF0907 | CROSS SLIDE WAY WIPER PLATE | | 908 | PSB1046PF0908 | THRUST BEARING NTB/AS2 1730 | | 909 | PSB1046PF0909 | WEDGE 7 X 7 X 30 | | 910 | PSB1046PF0910 | LEADSCREW HALF NUT | | 911 | PRP28M | ROLL PIN 5 X 40 | | 912 | PSB1046PF0912 | CROSS SLIDE LEADSCREW | | 913 | PK179M | KEY 3 X 3 X 115 | | 914 | PSB1046PF0914 | COOLANT NOZZLE 3/8 PT X 24" | | 915 | PSB1046PF0915 | COOLANT STAND PIPE ASSY 3/8 PT | | 916 | PSB1046PF0916 | BEARING COVER | | 917 | PSB1046PF0917 | SPACER | | 918 | PSB1046PF0918 | LEADSCREW BRACKET | | 919 | PSB1046PF0919 | SADDLE CASTING | | 920 | PSB1046PF0920 | SADDLE STRAIGHT WAY WIPER | | 921 | PSB1046PF0921 | SADDLE STRAIGHT WAY WIPER PLATE | | 922 | PSB1046PF0922 | OIL FILL CAP | | 923 | PSB1046PF0923 | TAPER PIN #6 X 2-1/2" | | 924 | PSB1046PF0924 | SADDLE V-WAY WIPER | | 925 | PSB1046PF0925 | SADDLE V-WAY WIPER PLATE | | 926 | PSB1046PF0926 | CROSS SLIDE PINION SHAFT 16T | | 927 | PK96M | KEY 3 X 3 X 20 | | 928 | PSB1046PF0928 | SHAFT CAP M16-2 X 5 | | 929 | PSB1046PF0929 | PINION SHAFT BRACKET | | 930 | PSB1046PF0930 | COMPRESSION SPRING | | 931 | PSTB001 | STEEL BALL 1/4 | | 932 | PSB1046PF0932 | THRUST BEARING NTB/AS2 2035 | | 933 | PSB1046PF0933 | SPACER | | 934 | PSB1046PF0934 | PINION SHAFT END CAP | | 935 | PSB1046PF0935 | GRADUATED DIAL BASE RING | | 936 | PSB1046PF0936 | GRADUATED DIAL | | 937 | PSB1046PF0937 | HANDWHEEL | | 938 PSB1046PF0938 HANDWHEEL END CAP 939 PSB1046PF0939 HANDWHEEL HANDLE 940 PSB1046PF0940 HANDLE CAP SCREW 941 PSB1046PF0941 FRONT SADDLE GIB SUPPORT 942 PSB1046PF0942 SADDLE GIB 943 PSB1046PF0943 REAR SADDLE GIB SUPPORT 944 PSB1046PF0944 ONE-SHOT OILER ASSEMBLY 946 PSB1046PF0946 GEAR 16T/36T 947 PSB1046PF0947 COUPLER 1/8"-4MM 948 PSB1046PF0947 COUPLER 1/8"-4MM 949 PSB1046PF0948 ALUMINUM OIL TUBE 4 X 258MM 949 PSB1046PF0949 ELBOW COUPLER 1/8"-4MM 950 PSB1046PF0950 ALUMINUM OIL TUBE 4 X 121MM 951 PSB1046PF0951 CAPTIVE PIN 952 PSB1046PF0952 COUPLER 1/8"-6MM 953 PSB1046PF0953 ALUMINUM OIL TUBE 6 X 175MM 954 PSB1046PF0953 ALUMINUM OIL TUBE 6 X 175MM 955 PSB1046PF0954 OIL FILTER 6MM 956 PSB1046PF0955 CLAMP PLATE <th>REF</th> <th>PART#</th> <th>DESCRIPTION</th> | REF | PART# | DESCRIPTION | |--|-----|---------------|-----------------------------| | 940 PSB1046PF0940 HANDLE CAP SCREW 941 PSB1046PF0941 FRONT SADDLE GIB SUPPORT 942 PSB1046PF0942 SADDLE GIB 943 PSB1046PF0943 REAR SADDLE GIB SUPPORT 944 PSB1046PF0944 ONE-SHOT OILER ASSEMBLY
946 PSB1046PF0946 GEAR 16T/36T 947 PSB1046PF0947 COUPLER 1/8"-4MM 948 PSB1046PF0948 ALUMINUM OIL TUBE 4 X 258MM 949 PSB1046PF0949 ELBOW COUPLER 1/8"-4MM 950 PSB1046PF0949 CAPTIVE PIN 951 PSB1046PF0951 CAPTIVE PIN 952 PSB1046PF0952 COUPLER 1/8"-6MM 953 PSB1046PF0953 ALUMINUM OIL TUBE 6 X 175MM 954 PSB1046PF0955 CLAMP PLATE 956 PSB44M SET SCREW M8-1.25 X 40 957 PCAP187M CAP SCREW M12-1.75 X 85 958 PLUBEOO1 TAP-IN BALL OILER 1/4 959 PSS12M SET SCREW M8-1.25 X 30 961 PW04M FLAT WASHER 10MM 962 PNO2M HEX NUT M10-1.5 963 PBH506M BUTTON HD CAP SCR M58 X 12 964 PCAP06M CAP SCREW M6-1 X 25 966 PCAP38M CAP SCREW M6-1 X 25 967 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M6-1 X 25 967 PSB1046PF0967 CAP SCREW M6-1 X 25 968 PSB1046PF0965 NUT M16 969 PCAP14M CAP SCREW M6-1 X 25 969 PSB1046PF0965 NUT M16 969 PCAP38M CAP SCREW M6-1 X 25 967 PSB1046PF0967 CAP SCREW M6-1 X 25 968 PSB03M SET SCREW M6-1 X 25 969 PCAP14M CAP 970 PSBH635M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M6-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 973 PSB1046PF0973 GIB RETAINING CLIP | 938 | PSB1046PF0938 | HANDWHEEL END CAP | | 941 PSB1046PF0941 FRONT SADDLE GIB SUPPORT 942 PSB1046PF0942 SADDLE GIB 943 PSB1046PF0943 REAR SADDLE GIB SUPPORT 944 PSB1046PF0944 ONE-SHOT OILER ASSEMBLY 946 PSB1046PF0946 GEAR 16T/36T 947 PSB1046PF0947 COUPLER 1/8"-4MM 948 PSB1046PF0948 ALUMINUM OIL TUBE 4 X 258MM 949 PSB1046PF0949 ELBOW COUPLER 1/8"-4MM 950 PSB1046PF0950 ALUMINUM OIL TUBE 4 X 121MM 951 PSB1046PF0951 CAPTIVE PIN 952 PSB1046PF0952 COUPLER 1/8"-6MM 953 PSB1046PF0953 ALUMINUM OIL TUBE 6 X 175MM 954 PSB1046PF0953 ALUMINUM OIL TUBE 6 X 175MM 955 PSB1046PF0955 CLAMP PLATE 956 PSS44M SET SCREW M8-1.25 X 40 957 PCAP187M CAP SCREW M12-1.75 X 85 958 PLUBEO01 TAP-IN BALL OILER 1/4 959 PSS12M SET SCREW M6-1 X 25 960 PCAP13M CAP SCREW M8-1.25 X 30 961 PW04M FLAT WASHER 10MM 962 PNO2M HEX NUT M10-1.5 963 PBH606M BUTTON HD CAP 9CR M58 X 12 964 PCAP06M CAP SCREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M6-1 X 25 967 PSB1046PF0967 CAP SCREW M6-1 X 25 968 PSB1046PF0967 CAP SCREW M6-1 X 25 969 PCAP14M CAP SCREW M6-1 X 25 969 PCAP14M CAP SCREW M6-1 X 25 969 PSB1046PF0967 CAP SCREW M6-1 X 25 969 PCAP14M CAP SCREW M6-1 X 25 969 PCAP14M CAP SCREW M6-1 X 25 969 PCAP14M CAP SCREW M6-1 X 25 970 PSBH635M BUTTON HD CAP 9CR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 | 939 | PSB1046PF0939 | HANDWHEEL HANDLE | | 942 PSB1046PF0942 SADDLE GIB 943 PSB1046PF0943 REAR SADDLE GIB SUPPORT 944 PSB1046PF0944 ONE-SHOT OILER ASSEMBLY 946 PSB1046PF0946 GEAR 16T/36T 947 PSB1046PF0947 COUPLER 1/8"-4MM 948 PSB1046PF0948 ALUMINUM OIL TUBE 4 X 258MM 949 PSB1046PF0949 ELBOW COUPLER 1/8"-4MM 950 PSB1046PF0950 ALUMINUM OIL TUBE 4 X 121MM 951 PSB1046PF0951 CAPTIVE PIN 952 PSB1046PF0952 COUPLER 1/8"-6MM 953 PSB1046PF0953 ALUMINUM OIL TUBE 6 X 175MM 954 PSB1046PF0954 OIL FILTER 6MM 955 PSB1046PF0955 CLAMP PLATE 956 PSB1046PF0955 CLAMP PLATE 957 PCAP187M CAP SCREW M8-1.25 X 40 957 PCAP187M CAP SCREW M6-1.25 X 85 958 PLUBEO01 TAP-IN BALL OILER 1/4 959 PSB12M SET SCREW M6-1 X 25 960 PCAP13M CAP SCREW M8-1.25 X 30 961< | 940 | PSB1046PF0940 | HANDLE CAP SCREW | | 943 PSB1046PF0943 REAR SADDLE GIB SUPPORT 944 PSB1046PF0944 ONE-SHOT OILER ASSEMBLY 946 PSB1046PF0946 GEAR 16T/36T 947 PSB1046PF0947 COUPLER 1/8"-4MM 948 PSB1046PF0948 ALUMINUM OIL TUBE 4 X 258MM 949 PSB1046PF0949 ELBOW COUPLER 1/8"-4MM 950 PSB1046PF0950 ALUMINUM OIL TUBE 4 X 121MM 951 PSB1046PF0951 CAPTIVE PIN 952 PSB1046PF0952 COUPLER 1/8"-6MM 953 PSB1046PF0953 ALUMINUM OIL TUBE 6 X 175MM 954 PSB1046PF0954 OIL FILTER 6MM 955 PSB1046PF0955 CLAMP PLATE 956 PSB1046PF0955 CLAMP PLATE 957 PCAP187M CAP SCREW M8-1.25 X 40 957 PCAP187M CAP SCREW M8-1.25 X 40 958 PLUBEO01 TAP-IN BALL OILER 1/4 959 PSB12M SET SCREW M6-1 X 25 960 PCAP13M CAP SCREW M8-1.25 X 30 961 PWO4M FLAT WASHER 10MM 962 <td>941</td> <td>PSB1046PF0941</td> <td>FRONT SADDLE GIB SUPPORT</td> | 941 | PSB1046PF0941 | FRONT SADDLE GIB SUPPORT | | 944 PSB1046PF0944 ONE-SHOT OILER ASSEMBLY 946 PSB1046PF0946 GEAR 16T/36T 947 PSB1046PF0947 COUPLER 1/8"-4MM 948 PSB1046PF0948 ALUMINUM OIL TUBE 4 X 258MM 949 PSB1046PF0949 ELBOW COUPLER 1/8"-4MM 950 PSB1046PF0950 ALUMINUM OIL TUBE 4 X 121MM 951 PSB1046PF0951 CAPTIVE PIN 952 PSB1046PF0952 COUPLER 1/8"-6MM 953 PSB1046PF0953 ALUMINUM OIL TUBE 6 X 175MM 954 PSB1046PF0954 OIL FILTER 6MM 955 PSB1046PF0955 CLAMP PLATE 956 PS944M SET 9CREW M8-1.25 X 40 957 PCAP187M CAP 9CREW M12-1.75 X 85 958 PLUBE001 TAP-IN BALL OILER 1/4 959 PS912M SET 9CREW M6-1 X 25 960 PCAP13M CAP 9CREW M8-1.25 X 30 961 PW04M FLAT WASHER 10MM 962 PN02M HEX NUT M10-1.5 963 PBH906M BUTTON HD CAP 9CR M58 X 12 964 PCAP06M CAP 9CREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP 9CREW M6-1 X 25 967 PSB1046PF0967 CAP 9CREW M6-1 X 25 968 PS903M SET 9CREW M6-1 X 25 969 PCAP14M CAP 9CREW M6-1 X 25 969 PCAP38M CAP 9CREW M6-1 X 25 960 PCAP38M CAP 9CREW M6-1 X 25 961 PSB1046PF0965 NUT M16 962 PCAP38M CAP 9CREW M6-1 X 25 963 PSB1046PF0967 CAP 9CREW M6-1 X 25 964 PCAP38M CAP 9CREW M6-1 X 25 965 PSB1046PF0967 CAP 9CREW M6-1 X 25 967 PSB1046PF0967 CAP 9CREW M6-1 X 25 968 PS903M SET 9CREW M6-1 X 25 969 PCAP14M CAP 9CREW M6-1 X 25 969 PCAP14M CAP 9CREW M6-1 X 20 970 PSBH935M BUTTON HD CAP 9CR M58 X 10 971 PCAP12M CAP 9CREW M825 X 40 972 PFH05M FLAT HD 9CR M58 X 12 973 PSB1046PF0973 GIB RETAINING CLIP | 942 | PSB1046PF0942 | SADDLE GIB | | 946 PSB1046PF0946 GEAR 16T/36T 947 PSB1046PF0947 COUPLER 1/8"-4MM 948 PSB1046PF0948 ALUMINUM OIL TUBE 4 X 258MM 949 PSB1046PF0949 ELBOW COUPLER 1/8"-4MM 950 PSB1046PF0950 ALUMINUM OIL TUBE 4 X 121MM 951 PSB1046PF0951 CAPTIVE PIN 952 PSB1046PF0952 COUPLER 1/8"-6MM 953 PSB1046PF0953 ALUMINUM OIL TUBE 6 X 175MM 954 PSB1046PF0954 OIL FILTER 6MM 955 PSB1046PF0955 CLAMP PLATE 956 PSG44M SET SCREW M8-1.25 X 40 957 PCAP187M CAP SCREW M12-1.75 X 85 958 PLUBE001 TAP-IN BALL OILER 1/4 959 PSG12M SET SCREW M6-1 X 25 960 PCAP13M CAP SCREW M8-1.25 X 30 961 PW04M FLAT WASHER 10MM 962 PN02M HEX NUT M10-1.5 963 PBH906M BUTTON HD CAP SCR M58 X 12 964 PCAP06M CAP SCREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M6-1 X 25 967 PSB1046PF0967 CAP SCREW M6-1 X 8 969 PCAP14M PCAP14 | 943 | PSB1046PF0943 | REAR SADDLE GIB SUPPORT | | 947 PSB1046PF0947 COUPLER 1/8"-4MM 948 PSB1046PF0948 ALUMINUM OIL TUBE 4 X 258MM 949 PSB1046PF0949 ELBOW COUPLER 1/8"-4MM 950 PSB1046PF0950 ALUMINUM OIL TUBE 4 X 121MM 951 PSB1046PF0951 CAPTIVE PIN 952 PSB1046PF0952 COUPLER 1/8"-6MM 953 PSB1046PF0953 ALUMINUM OIL TUBE 6 X 175MM 954 PSB1046PF0954 OIL FILTER 6MM 955 PSB1046PF0955 CLAMP PLATE 956 PSS44M SET SCREW M8-1.25 X 40 957 PCAP187M CAP SCREW M12-1.75 X 85 958 PLUBE001 TAP-IN BALL OILER 1/4 959 PS612M SET SCREW M6-1 X 25 960 PCAP13M CAP SCREW M8-1.25 X 30 961 PW04M FLAT WASHER 10MM 962 PN02M HEX NUT M10-1.5 963 PBHS06M BUTTON HD CAP SCR M58 X 12 964 PCAP06M CAP SCREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38 | 944 | PSB1046PF0944 | ONE-SHOT OILER ASSEMBLY | | 948 PSB1046PF0948 ALUMINUM OIL TUBE 4 X 258MM 949 PSB1046PF0949 ELBOW COUPLER 1/8"-4MM 950 PSB1046PF0950 ALUMINUM OIL TUBE 4 X 121MM 951 PSB1046PF0951 CAPTIVE PIN 952 PSB1046PF0952 COUPLER 1/8"-6MM 953 PSB1046PF0953 ALUMINUM OIL TUBE 6 X 175MM 954 PSB1046PF0954 OIL FILTER 6MM 955 PSB1046PF0955 CLAMP PLATE 956 PSB44M SET SCREW M8-1.25 X 40 957 PCAP187M CAP SCREW M12-1.75 X 85 958 PLUBEOO1 TAP-IN BALL OILER 1/4 959 PS612M SET SCREW M6-1 X 25 960 PCAP13M CAP SCREW M8-1.25 X 30 961 PWO4M FLAT WASHER 10MM 962 PNO2M HEX NUT M10-1.5 963 PBHS06M BUTTON HD CAP SCR M58 X 12 964 PCAP06M CAP SCREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M6-1 X 8 969 PCAP14M <td>946</td> <td>PSB1046PF0946</td> <td>GEAR 16T/36T</td> | 946 | PSB1046PF0946 | GEAR 16T/36T | | 949 PSB1046PF0949 ELBOW COUPLER 1/8"-4MM 950 PSB1046PF0950 ALUMINUM OIL TUBE 4 X 121MM 951 PSB1046PF0951 CAPTIVE PIN 952 PSB1046PF0952 COUPLER 1/8"-6MM 953 PSB1046PF0953 ALUMINUM OIL TUBE 6 X 175MM 954 PSB1046PF0954 OIL FILTER 6MM 955 PSB1046PF0955 CLAMP PLATE 956 PSB44M SET SCREW M8-1.25 X 40 957 PCAP187M CAP SCREW M12-1.75 X 85 958 PLUBEO01 TAP-IN BALL OILER 1/4 959 PSS12M SET SCREW M6-1 X 25 960 PCAP13M CAP SCREW M8-1.25 X 30 961 PW04M FLAT WASHER 10MM 962 PN02M HEX NUT M10-1.5 963 PBHS06M BUTTON HD CAP SCR M58 X 12 964 PCAP06M CAP SCREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M10-1.25 X 80 967 PSB1046PF0967 CAP SCREW M8-1.25 X 20 968 PSG03M <td>947</td> <td>PSB1046PF0947</td> <td>COUPLER 1/8"-4MM</td> | 947 | PSB1046PF0947 | COUPLER 1/8"-4MM | | 950 PSB1046PF0950 ALUMINUM OIL TUBE 4 X 121MM 951 PSB1046PF0951 CAPTIVE PIN 952 PSB1046PF0952 COUPLER 1/8"-6MM 953 PSB1046PF0953 ALUMINUM OIL TUBE 6 X 175MM 954 PSB1046PF0954 OIL FILTER 6MM 955 PSB1046PF0955 CLAMP PLATE 956 PSS44M SET SCREW M8-1.25 X 40 957 PCAP187M CAP SCREW M12-1.75 X 85 958 PLUBE001 TAP-IN BALL OILER 1/4 959 PSS12M SET SCREW M6-1 X 25 960 PCAP13M CAP SCREW M8-1.25 X 30 961 PW04M FLAT WASHER 10MM 962 PN02M HEX NUT M10-1.5 963 PBHS06M BUTTON HD CAP SCR M58 X 12 964 PCAP06M CAP SCREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M10-1.25 X 80 967 PSB1046PF0967 CAP SCREW M10-1.25 X 80 968 PSS03M SET SCREW M8-1.25 X 20 970 PSBHS35M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 | 948 | PSB1046PF0948 | ALUMINUM OIL TUBE 4 X 258MM | | 951 PSB1046PF0951 CAPTIVE PIN 952 PSB1046PF0952 COUPLER 1/8"-6MM 953 PSB1046PF0953 ALUMINUM OIL TUBE 6 X 175MM 954 PSB1046PF0954 OIL FILTER 6MM 955 PSB1046PF0955 CLAMP PLATE 956 PSS44M SET SCREW M8-1.25 X 40 957 PCAP187M CAP SCREW M12-1.75 X 85 958 PLUBEO01 TAP-IN BALL OILER 1/4 959 PSS12M SET SCREW M6-1 X 25 960 PCAP13M CAP SCREW M8-1.25 X 30 961 PW04M FLAT WASHER 10MM 962 PN02M HEX NUT M10-1.5 963 PBHS06M BUTTON HD CAP SCR M58 X 12 964 PCAP06M CAP SCREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M10-1.25 X 80 967 PSB1046PF0967 CAP SCREW M6-1 X 8 969 PCAP14M CAP SCREW M6-1 X 8 969 PCAP14M CAP SCREW M6-1.25 X 20 970 PSBHS35M BUTTON HD CAP SCR M58 X 10
971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 | 949 | PSB1046PF0949 | ELBOW COUPLER 1/8"-4MM | | 952 PSB1046PF0952 COUPLER 1/8"-6MM 953 PSB1046PF0953 ALUMINUM OIL TUBE 6 X 175MM 954 PSB1046PF0954 OIL FILTER 6MM 955 PSB1046PF0955 CLAMP PLATE 956 PSS44M SET SCREW M8-1.25 X 40 957 PCAP187M CAP SCREW M12-1.75 X 85 958 PLUBE001 TAP-IN BALL OILER 1/4 959 PSS12M SET SCREW M6-1 X 25 960 PCAP13M CAP SCREW M8-1.25 X 30 961 PW04M FLAT WASHER 10MM 962 PN02M HEX NUT M10-1.5 963 PBHS06M BUTTON HD CAP SCR M58 X 12 964 PCAP06M CAP SCREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M10-1.25 X 80 967 PSB1046PF0967 CAP SCREW M6-1 X 8 969 PCAP14M CAP SCREW M6-1.25 X 20 970 PSBHS35M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 | 950 | PSB1046PF0950 | ALUMINUM OIL TUBE 4 X 121MM | | 953 PSB1046PF0953 ALUMINUM OIL TUBE 6 X 175MM 954 PSB1046PF0954 OIL FILTER 6MM 955 PSB1046PF0955 CLAMP PLATE 956 PS644M SET SCREW M8-1.25 X 40 957 PCAP187M CAP SCREW M12-1.75 X 85 958 PLUBE001 TAP-IN BALL OILER 1/4 959 PS612M SET SCREW M6-1 X 25 960 PCAP13M CAP SCREW M8-1.25 X 30 961 PW04M FLAT WASHER 10MM 962 PN02M HEX NUT M10-1.5 963 PBHS06M BUTTON HD CAP SCR M58 X 12 964 PCAP06M CAP SCREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M58 X 25 967 PSB1046PF0967 CAP SCREW M6-1 X 8 968 PSG03M SET SCREW M6-1 X 8 969 PCAP14M CAP SCREW M8-1.25 X 20 970 PSBH935M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLA | 951 | PSB1046PF0951 | CAPTIVE PIN | | 954 PSB1046PF0954 OIL FILTER 6MM 955 PSB1046PF0955 CLAMP PLATE 956 PS944M SET SCREW M8-1.25 X 40 957 PCAP187M CAP SCREW M12-1.75 X 85 958 PLUBE001 TAP-IN BALL OILER 1/4 959 PS912M SET SCREW M6-1 X 25 960 PCAP13M CAP SCREW M8-1.25 X 30 961 PW04M FLAT WASHER 10MM 962 PN02M HEX NUT M10-1.5 963 PBHS06M BUTTON HD CAP SCR M58 X 12 964 PCAP06M CAP SCREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M10-1.25 X 80 967 PSB1046PF0967 CAP SCREW M10-1.25 X 80 968 PSG03M SET SCREW M6-1 X 8 969 PCAP14M CAP SCREW M8-1.25 X 20 970 PSBHS35M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 | 952 | PSB1046PF0952 | COUPLER 1/8"-6MM | | 955 PSB1046PF0955 CLAMP PLATE 956 PSG44M SET SCREW M8-1.25 X 40 957 PCAP187M CAP SCREW M12-1.75 X 85 958 PLUBE001 TAP-IN BALL OILER 1/4 959 PSG12M SET SCREW M6-1 X 25 960 PCAP13M CAP SCREW M8-1.25 X 30 961 PW04M FLAT WASHER 10MM 962 PN02M HEX NUT M10-1.5 963 PBHS06M BUTTON HD CAP SCR M58 X 12 964 PCAP06M CAP SCREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M58 X 25 967 PSB1046PF0967 CAP SCREW M10-1.25 X 80 968 PSG03M SET SCREW M6-1 X 8 969 PCAP14M CAP SCREW M8-1.25 X 20 970 PSBHS35M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD GCR M58 X 12 973 PSB1046PF0973 GIB RETAINING CLIP | 953 | PSB1046PF0953 | ALUMINUM OIL TUBE 6 X 175MM | | 956 PSS44M SET SCREW M8-1.25 X 40 957 PCAP187M CAP SCREW M12-1.75 X 85 958 PLUBEOO1 TAP-IN BALL OILER 1/4 959 PSS12M SET SCREW M6-1 X 25 960 PCAP13M CAP SCREW M8-1.25 X 30 961 PWO4M FLAT WASHER 10MM 962 PNO2M HEX NUT M10-1.5 963 PBHS06M BUTTON HD CAP SCR M58 X 12 964 PCAP06M CAP SCREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M58 X 25 967 PSB1046PF0967 CAP SCREW M10-1.25 X 80 968 PS603M SET SCREW M6-1 X 8 969 PCAP14M CAP SCREW M8-1.25 X 20 970 PSBHS35M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 | 954 | PSB1046PF0954 | OIL FILTER 6MM | | 957 PCAP187M CAP SCREW M12-1.75 X 85 958 PLUBEOO1 TAP-IN BALL OILER 1/4 959 PSS12M SET SCREW M6-1 X 25 960 PCAP13M CAP SCREW M8-1.25 X 30 961 PW04M FLAT WASHER 10MM 962 PN02M HEX NUT M10-1.5 963 PBHS06M BUTTON HD CAP SCR M58 X 12 964 PCAP06M CAP SCREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M58 X 25 967 PSB1046PF0967 CAP SCREW M10-1.25 X 80 968 PSS03M SET SCREW M6-1 X 8 969 PCAP14M CAP SCREW M8-1.25 X 20 970 PSBHS35M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 973 PSB1046PF0973 GIB RETAINING CLIP | 955 | PSB1046PF0955 | CLAMP PLATE | | 958 PLUBEOO1 TAP-IN BALL OILER 1/4 959 PS612M SET SCREW M6-1 X 25 960 PCAP13M CAP SCREW M8-1.25 X 30 961 PW04M FLAT WASHER 10MM 962 PN02M HEX NUT M10-1.5 963 PBHS06M BUTTON HD CAP SCR M58 X 12 964 PCAP06M CAP SCREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M58 X 25 967 PSB1046PF0967 CAP SCREW M10-1.25 X 80 968 PS603M SET SCREW M6-1 X 8 969 PCAP14M CAP SCREW M8-1.25 X 20 970 PSBHS35M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 | 956 | PSS44M | SET SCREW M8-1.25 X 40 | | 959 PSS12M SET SCREW M6-1 X 25 960 PCAP13M CAP SCREW M8-1.25 X 30 961 PW04M FLAT WASHER 10MM 962 PN02M HEX NUT M10-1.5 963 PBHS06M BUTTON HD CAP SCR M58 X 12 964 PCAP06M CAP SCREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M58 X 25 967 PSB1046PF0967 CAP SCREW M10-1.25 X 80 968 PSS03M SET SCREW M6-1 X 8 969 PCAP14M CAP SCREW M8-1.25 X 20 970 PSBHS35M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 973 PSB1046PF0973 GIB RETAINING CLIP | 957 | PCAP187M | CAP SCREW M12-1.75 X 85 | | 960 PCAP13M CAP SCREW M8-1.25 X 30 961 PW04M FLAT WASHER 10MM 962 PN02M HEX NUT M10-1.5 963 PBHS06M BUTTON HD CAP SCR M58 X 12 964 PCAP06M CAP SCREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M58 X 25 967 PSB1046PF0967 CAP SCREW M10-1.25 X 80 968 PSS03M SET SCREW M6-1 X 8 969 PCAP14M CAP SCREW M8-1.25 X 20 970 PSBHS35M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 973 PSB1046PF0973 GIB RETAINING CLIP | 958 | PLUBEOO1 | TAP-IN BALL OILER 1/4 | | 961 PW04M FLAT WASHER 10MM 962 PN02M HEX NUT M10-1.5 963 PBHS06M BUTTON HD CAP SCR M58 X 12 964 PCAP06M CAP SCREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M58 X 25 967 PSB1046PF0967 CAP SCREW M10-1.25 X 80 968 PS603M SET SCREW M6-1 X 8 969 PCAP14M CAP SCREW M8-1.25 X 20 970 PSBHS35M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 973 PSB1046PF0973 GIB RETAINING CLIP | 959 | PSS12M | SET SCREW M6-1 X 25 | | 962 PNO2M HEX NUT M10-1.5 963 PBHS06M BUTTON HD CAP SCR M58 X 12 964 PCAP06M CAP SCREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M58 X 25 967 PSB1046PF0967 CAP SCREW M10-1.25 X 80 968 PSS03M SET SCREW M6-1 X 8 969 PCAP14M CAP SCREW M8-1.25 X 20 970 PSBHS35M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 973 PSB1046PF0973 GIB RETAINING CLIP | 960 | PCAP13M | CAP SCREW M8-1.25 X 30 | | 963 PBHS06M BUTTON HD CAP SCR M58 X 12 964 PCAP06M CAP SCREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M58 X 25 967 PSB1046PF0967 CAP SCREW M10-1.25 X 80 968 PSS03M SET SCREW M6-1 X 8 969 PCAP14M CAP SCREW M8-1.25 X 20 970 PSBHS35M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 973 PSB1046PF0973 GIB RETAINING CLIP | 961 | PWO4M | FLAT WASHER 10MM | | 964 PCAPO6M CAP SCREW M6-1 X 25 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M58 X 25 967 PSB1046PF0967 CAP SCREW M10-1.25 X 80 968 PSS03M SET SCREW M6-1 X 8 969 PCAP14M CAP SCREW M8-1.25 X 20 970 PSBHS35M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 973 PSB1046PF0973 GIB RETAINING CLIP | 962 | PNO2M | HEX NUT M10-1.5 | | 965 PSB1046PF0965 NUT M16 966 PCAP38M CAP SCREW M58 X 25 967 PSB1046PF0967 CAP SCREW M10-1.25 X 80 968 PSS03M SET SCREW M6-1 X 8 969 PCAP14M CAP SCREW M8-1.25 X 20 970 PSBHS35M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 973 PSB1046PF0973 GIB RETAINING CLIP | 963 | РВНЅО6М | BUTTON HD CAP SCR M58 X 12 | | 966 PCAP38M CAP SCREW M58 X 25 967 PSB1046PF0967 CAP SCREW M10-1.25 X 80 968 PSS03M SET SCREW M6-1 X 8 969 PCAP14M CAP SCREW M8-1.25 X 20 970 PSBHS35M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 973 PSB1046PF0973 GIB RETAINING CLIP | 964 | PCAPO6M | CAP SCREW M6-1 X 25 | | 967 PSB1046PF0967 CAP SCREW M10-1.25 X 80 968 PSS03M SET SCREW M6-1 X 8 969 PCAP14M CAP SCREW M8-1.25 X 20 970 PSBHS35M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 973 PSB1046PF0973 GIB RETAINING CLIP | 965 | PSB1046PF0965 | NUT M16 | | 968 PSSO3M SET SCREW M6-1 X 8 969 PCAP14M CAP SCREW M8-1.25 X 20 970 PSBHS35M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 973 PSB1046PF0973 GIB RETAINING CLIP | 966 | PCAP38M | CAP SCREW M58 X 25 | | 969 PCAP14M CAP SCREW M8-1.25 X 20 970 PSBHS35M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 973 PSB1046PF0973 GIB RETAINING CLIP | 967 | PSB1046PF0967 | CAP SCREW M10-1.25 X 80 | | 970 PSBHS35M BUTTON HD CAP SCR M58 X 10 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 973 PSB1046PF0973 GIB RETAINING CLIP | 968 | P5503M | SET SCREW M6-1 X 8 | | 971 PCAP12M CAP SCREW M8-1.25 X 40 972 PFH05M FLAT HD SCR M58 X 12 973 PSB1046PF0973 GIB RETAINING CLIP | 969 | PCAP14M | CAP SCREW M8-1.25 X 20 | | 972 PFH05M FLAT HD SCR M58 X 12 973 PSB1046PF0973 GIB RETAINING CLIP | 970 | PSBHS35M | BUTTON HD CAP SCR M58 X 10 | | 973 PSB1046PF0973 GIB RETAINING CLIP | 971 | PCAP12M | CAP SCREW M8-1.25 X 40 | | | 972 | PFH05M | FLAT HD SCR M58 X 12 | | 974 PSSO9M SET SCREW M8-1.25 X 20 | 973 | PSB1046PF0973 | GIB RETAINING CLIP | | <u> </u> | 974 | P5509M | SET SCREW M8-1.25 X 20 | # **Tool Post & Compound Rest** | REF | PART# | DESCRIPTION | |-------|----------------|--| | 1000 | PSB1046PF1000 | 4-WAY TOOL POST ASSEMBLY | | 1001 | PSB1046PF1001 | TOOL POST LEVER | | 1002 | PSB1046PF1002 | TOOL POST LEVER HUB | | 1003 | PSB1046PF1003 | HUB THRUST WASHER | | 1004 | PSB1046PF1004 | TOOL POST BOLT | | 1005 | PSB1046PF1005 | POST
BODY | | 1006 | PSB1046PF1006 | POST SHAFT | | 1007 | PSB1046PF1007 | TOOL POST PLUNGER | | 1008 | PSB1046PF1008 | COMPRESSION SPRING | | 1009 | PSS09M | SET SCREW M8-1.25 X 20 | | 1010 | PSB1046PF1010 | TOOL POST T-SLIDER | | 1012A | PSB1046PF1012A | COMPOUND REST ASSEMBLY (SB1046PF-48PF) | | 1012A | PSB1056F1012A | COMPOUND REST ASSEMBLY (SB1056F-58F) | | 1012 | PSB1046PF1012 | COMPOUND REST (SB1046PF-48PF) | | 1012 | PSB1056F1012 | COMPOUND REST (SB1056F-58F) | | 1013 | PSS06M | SET SCREW M8-1.25 X 16 | | 1014 | PSTB001 | STEEL BALL 1/4 | | 1015 | PLUBE001 | TAP-IN BALL OILER 1/4 | | REF | PART# | DESCRIPTION | |------|---------------|------------------------------------| | 1016 | PSB1046PF1016 | GIB ADJUSTMENT SCREW | | 1017 | PSB1046PF1017 | COMPOUND REST GIB | | 1018 | PSB1046PF1018 | COMPOUND REST BASE (SB1046PF-48PF) | | 1018 | PSB1056F1018 | COMPOUND REST BASE (SB1056F-58F) | | 1019 | PSS19M | SET SCREW M8-1.25 X 30 | | 1020 | PSB1046PF1020 | COMPOUND REST LEADSCREW W/NUT | | 1022 | PK47M | KEY 4 X 4 X 15 | | 1023 | PSB1046PF1023 | THRUST BEARING NTB/AS2 2035 | | 1024 | PSB1046PF1024 | LEADSCREW BRACKET | | 1025 | PSB1046PF1025 | COMPRESSION SPRING | | 1026 | PCAPO2M | CAP SCREW M6-1 X 20 | | 1027 | PSB1046PF1027 | GRADUATED DIAL BASE | | 1028 | PSB1046PF1028 | GRADUATED DIAL | | 1029 | PSB1046PF1029 | HANDWHEEL | | 1030 | PSB1046PF1030 | HANDWHEEL HANDLE | | 1032 | PSB1046PF1032 | HANDWHEEL END CAP | | 1033 | PSS25M | SET SCREW M6-1 X 20 | | 1034 | PSB1046PF1034 | HANDWHEEL HANDLE | # **Bed & Shafts** ## **Bed & Shafts Parts List** | REF | PART# | DESCRIPTION | |------|---------------|--------------------------------| | 1101 | PSB1056F1101 | LATHE BED 40" (SB1056F) | | 1101 | PSB1046PF1101 | LATHE BED 60" (SB1046PF, -57F) | | 1101 | PSB1047PF1101 | LATHE BED 80" (SB1047PF, -58F) | | 1101 | PSB1048PF1101 | LATHE BED 120" (SB1048PF) | | 1102 | PSB1056F1102 | LATHE BED GAP (SB1056F) | | 1102 | PSB1046PF1102 | LATHE BED GAP (SB1046PF, -57F) | | 1102 | PSB1047PF1102 | LATHE BED GAP (SB1047PF, -58F) | | 1102 | PSB1048PF1102 | LATHE BED GAP (SB1048PF) | | 1103 | PN09M | HEX NUT M12-1.75 | | 1104 | PSB1046PF1104 | BED STOP BOLT | | 1105 | PW08M | FLAT WASHER 16MM | | 1106 | PB80M | HEX BOLT M16-2 X 55 | | 1107 | PCAPO6M | CAP SCREW M6-1 X 25 | | 1108 | PRP08M | ROLL PIN 6 X 30 | | 1109 | PSB1056F1109 | BED RACK (SB1056F) | | 1109 | PSB1046PF1109 | BED RACK (SB1046PF, -57F) | | 1109 | PSB1047PF1109 | BED RACK (SB1047PF, -58F) | | 1109 | PSB1048PF1109 | BED RACK (SB1048PF) | | 1110 | PSB1056F1110 | GAP RACK (SB1056F) | | 1110 | PSB1046PF1110 | GAP RACK (SB1046PF, -57F) | | 1110 | PSB1047PF1110 | GAP RACK (SB1047PF, -58F) | | 1110 | PSB1048PF1110 | GAP RACK (SB1048PF) | | 1111 | PSB1046PF1111 | LEADSCREW LOCK NUT | | 1115 | PSS03M | SET SCREW M6-1 X 8 | | 1116 | P51105 | THRUST BEARING 51105 | | 1117 | PSB1046PF1117 | SHAFT END BRACKET | | 1118 | PSB1056F1118 | LEADSCREW (SB1056F) | | 1118 | PSB1046PF1118 | LEADSCREW (SB1046PF, -57F) | | 1118 | PSB1047PF1118 | LEADSCREW (SB1047PF, -58F) | | 1118 | PSB1048PF1118 | LEADSCREW (SB1048PF) | | 1119 | РК99М | KEY 6 X 6 X 15 | | 1120 | PSB1046PF1120 | LEADSCREW SPRING HOUSING | | 1125 | PSB1046PF1125 | LEADSCREW SPRING | | 1126 | PSB1046PF1126 | KEYED LEADSCREW FLAT WASHER | | 1127 | PSB101609327 | SHEAR PIN | | 1128 | PSB1046PF1128 | LEADSCREW FLANGE BUSHING | | 1129 | PSB1046PF1129 | FEED ROD END CAP | | 1130 | PLUBEOO1 | TAP-IN BALL OILER 1/4 | | 1134 | PSB1046PF1134 | LOCK COLLAR | | 1135 | PSS01M | SET SCREW M6-1 X 10 | | 1136 | PSB1056F1136 | FEED ROD (SB1056F) | | 1136 | PSB1046PF1136 | FEED ROD (SB1046PF, -57F) | | REF | PART# | DESCRIPTION | |------|---------------|--------------------------------| | 1136 | PSB1047PF1136 | FEED ROD (SB1047PF, -58F) | | 1136 | PSB1048PF1136 | FEED ROD (SB1048PF) | | 1137 | PSS15M | SET SCREW M12-1.75 X 12 | | 1138 | PSB1046PF1138 | COMPRESSION SPRING | | 1139 | PSTB003 | STEEL BALL 3/8" | | 1140 | PCAP84M | CAP SCREW M10-1.5 X 35 | | 1145 | PSB1046PF1145 | TAPER PIN 7 X 50 | | 1146 | PSB1046PF1146 | SPINDLE ON/OFF LEVER HUB | | 1147 | PSB1046PF1147 | STEP PIN | | 1148 | PSB1046PF1148 | SPINDLE ON/OFF LEVER | | 1149 | PCAPO1M | CAP SCREW M6-1 X 16 | | 1150 | PSB1046PF1150 | SPINLE LEVER SELECTOR BRACKET | | 1155 | PSB1046PF1155 | SPINDLE ROD SLEEVE | | 1156 | PSB1046PF1156 | SPINDLE ROD COMPRESSION SPRING | | 1157 | PSB1046PF1157 | SPINDLE ROD SPRING COVER | | 1158 | PR37M | EXT RETAINING RING 32MM | | 1159 | PSB1056F1159 | SPINDLE ROD (SB1056F) | | 1159 | PSB1046PF1159 | SPINDLE ROD (SB1046PF, -57F) | | 1159 | PSB1047PF1159 | SPINDLE ROD (SB1047PF, -58F) | | 1159 | PSB1048PF1159 | SPINDLE ROD (SB1048PF) | | 1160 | PSS20M | SET SCREW M8-1.25 X 8 | | 1161 | PSB1046PF1161 | SPINDLE ROD LEVER HUB | | 1166 | PSB1046PF1166 | SPINDLE ROD LEVER | | 1167 | PECO15M | E-CLIP 8MM | | 1168 | PSB1046PF1168 | SPINDLE SWITCH PIVOT ARM | | 1169 | PSB1046PF1169 | SPINDLE SWITCH PIVOT PIN | | 1170 | PSS14M | SET SCREW M8-1.25 X 12 | | 1171 | PSB1046PF1171 | SPINDLE SWITCH LINKAGE | | 1172 | PSB1047PF1172 | STEP SHAFT (SB1047PF, -58F) | | 1172 | PSB1048PF1172 | STEP SHAFT (SB1048PF) | | 1173 | PCAP128M | CAP SCREW M8-1.25 X 70 | | 1174 | PSB1047PF1174 | BED CLAMP (SB1047PF, -58F) | | 1174 | PSB1048PF1174 | BED CLAMP (SB1048PF) | | 1175 | PSS09M | SET SCREW M8-1.25 X 20 | | 1176 | PSB1047PF1176 | PLUNGER | | 1177 | PSB1047PF1177 | LOWER CLAMP PLATE | | 1178 | PSS06M | SET SCREW M8-1.25 X 16 | | 1179 | PSB1047PF1179 | SHAFT SUPPORT (SB1047PF, -58F) | | 1179 | PSB1048PF1179 | SHAFT SUPPORT (SB1048PF) | | 1180 | PR12M | EXT RETAINING RING 35MM | | 1181 | PSS20M | SET SCREW M8-1.25 X 8 | | 1182 | PSB1047PF1182 | BUSHING | # **Stands & Panels** (**SB1046PF-47PF, SB1056F-58F**) # Stand & Panels Parts List (SB1046PF-47PF, SB1056F-58F) | REF | PART# | DESCRIPTION | |------|---------------|------------------------------------| | 1201 | PSB1056F1201 | BRAKE PEDAL SHAFT (SB1056F) | | 1201 | PSB1046PF1201 | BRAKE PEDAL SHAFT (SB1046PF, -57F) | | 1201 | PSB1047PF1201 | BRAKE PEDAL SHAFT (SB1047PF, -58F) | | 1202 | PSB1056F1202 | BRAKE PEDAL (SB1056F) | | 1202 | PSB1046PF1202 | BRAKE PEDAL (SB1046PF, -57F) | | 1202 | PSB1047PF1202 | BRAKE PEDAL (SB1047PF, -58F) | | 1203 | PSB1046PF1203 | PEDAL SHAFT LOCK COLLAR | | 1204 | PCAPO1M | CAP SCREW M6-1 X 16 | | 1205 | PCAPO4M | CAP SCREW M6-1 X 10 | | 1206 | PW03M | FLAT WASHER 6MM | | 1207 | PSB1056F1207 | CENTER PANEL (SB1056F) | | 1207 | PSB1046PF1207 | CENTER PANEL (SB1046PF, -57F) | | 1207 | PSB1047PF1207 | CENTER PANEL (SB1047PF, -58F) | | 1208 | PSB1056F1208 | CHIP DRAWER (SB1056F) | | 1208 | PSB1046PF1208 | CHIP DRAWER (SB1046PF, -57F) | | 1208 | PSB1047PF1208 | CHIP DRAWER (SB1047PF, -58F) | | 1209 | PSB1046PF1209 | CENTER PANEL BRACKET | | 1210 | РВН538М | BUTTON HD CAP SCR M58 X 8 | | 1211 | PSB1046PF1211 | SHAFT CLUTCH COVER (SB1046PF-47PF) | | 1211 | PSB1056F1211 | SHAFT CLUTCH COVER (SB1056F-58F) | | 1212 | PSB1046PF1212 | BRAKE LINKAGE GUARD | | 1213 | PSB1046PF1213 | BACKSPLASH MOUNT (SB1046PF-47PF) | | 1213 | PSB1056F1213 | BACKSPLASH MOUNT (SB1056F-58F) | | 1214 | PSB1046PF1214 | CHUCK GUARD PIVOT BRACKET | | 1215 | РВ56М | CAP SCREW M10-1.5 X 20 | | 1216 | PSS14M | SET SCREW M8-1.25 X 12 | | 1217 | PNO4M | HEX NUT M47 | | 1218 | PLW03M | LOCK WASHER 6MM | | 1219 | PCAP26M | CAP SCREW M6-1 X 12 | | 1220 | PSB1046PF1220 | SAFETY SWITCH BRACKET | | 1221 | PSB1046PF1221 | CHUCK GUARD SAFETY SWITCH TZ9212 | | 1222 | РВНСЅЗ8М | BUTTON HD CAP SCR M47 X 40 | | 1223 | PNO3M | HEX NUT M8-1.25 | | 1224 | PW01M | FLAT WASHER 8MM | | 1225 | PCAP14M | CAP SCREW M8-1.25 X 20 | | REF | PART# | DESCRIPTION | |------|---------------|-------------------------------------| | 1226 | PSB1056F1226 | BACKSPLASH (SB1056F) | | 1226 | PSB1046PF1226 | BACKSPLASH (SB1046PF, -57F) | | 1226 | PSB1047PF1226 | BACKSPLASH (SB1047PF, -58F) | | 1227 | PSB1046PF1227 | CHUCK GUARD KNOB 1/2-13 | | 1228 | PN06 | HEX NUT 1/2-13 | | 1229 | PB52 | HEX BOLT 1/2-13 X 1 | | 1230 | PSB1046PF1230 | CHUCK GUARD PIVOT ROD | | 1231 | PSB1046PF1231 | CHUCK SAFETY GUARD | | 1232 | PCAP26M | CAP SCREW M6-1 X 12 | | 1233 | PSS34M | SET SCREW M58 X 16 | | 1234 | PSB1046PF1234 | COOLANT CHUTE | | 1235 | PSB1056F1235 | H0SE 3/8 X 72" (SB1056F) | | 1235 | PSB1046PF1235 | H0SE 3/8 X 78" (SB1046PF, -57F) | | 1235 | PSB1047PF1235 | H0SE 3/8 X 96" (SB1047PF, -58F) | | 1236 | PSB1046PF1236 | PIPE NIPPLE 3/8 PT X 3/8 PH | | 1237 | PSB1046PF1237 | COOLANT PUMP ASSEMBLY | | 1238 | PSB1046PF1238 | COOLANT TANK (SB1046PF-48PF) | | 1238 | PSB1056F1238 | COOLANT TANK (SB1056F-58F) | | 1239 | PSB1046PF1239 | COOLANT TANK COVER | | 1240 | PBHS11M | BUTTON HD CAP SCREW M6-1 X 10 | | 1241 | PSB1056F1241 | RIGHT SPLASH TRAY (SB1056F) | | 1241 | PSB1046PF1241 | RIGHT SPLASH TRAY (SB1046PF, -57F) | | 1241 | PSB1047PF1241 | RIGHT SPLASH TRAY (SB1047PF, -58F) | | 1242 | PSB1046PF1242 | LEFT SPLASH TRAY | | 1243 | PSB1046PF1243 | MOTOR ACCESS COVER | | 1244 | PSB1046PF1244 | BACKSPLASH MOUNTING POST | | 1245 | PSB1046PF1245 | CONTROL PANEL | | 1246 | PSB1046PF1246 | LEFT CABINET | | 1247 | PSB1046PF1247 | RIGHT CABINET | | 1248 | PSB1046PF1248 | LEVELING FOOT | | 1249 | РВ8ОМ | HEX BOLT M16-2 X 55 | | 1250 | PSB1046PF1250 | CHUCK GUARD WINDOW PLASTIC | | 1251 | РВНЅОЭМ | BUTTON HD CAP SCR M6-1 X 12 | | 1252 | PSB1046PF1252 | END GEAR COVER ASSY (SB1046PF-48PF) | | 1252 | PSB1056F1252 | END GEAR COVER ASSY (SB1056F-58F) | # Stand & Panels (SB1048PF) # **Stand & Panels Parts List (SB1048PF)** | REF | PART# | DESCRIPTION | |------|---------------|----------------------------------| | 1201 | PSB1048PF1201 | BRAKE PEDAL SHAFT | | 1202 | PSB1048PF1202 | LEFT BRAKE PEDAL | | 1203 | PSB1048PF1203 | RIGHT BRAKE PEDAL | | 1204 | PSB1048PF1204 | PEDAL SHAFT COLLAR | | 1205 | PCAPO1M | CAP SCREW M6-1 X 16 | | 1206 | PCAPO4M | CAP SCREW M6-1 X 10 | | 1207 | PW03M | FLAT WASHER 6MM | | 1208 | PSB1048PF1208 | CENTER PANEL | | 1209 | PSB1048PF1209 | CHIP DRAWER | | 1210 | PSB1048PF1210 |
CABINET PANEL BRACKET | | 1211 | PS05M | PHLP HD SCR M58 X 8 | | 1212 | PSB1048PF1212 | SHAFT CLUTCH COVER | | 1213 | PSB1048PF1213 | BRAKE LINKAGE COVER | | 1214 | PSB1048PF1214 | BACKSPLASH MOUNTING PLATE | | 1215 | PSB1046PF1214 | CHUCK GUARD PIVOT BRACKET | | 1216 | РВ56М | CAP SCREW M10-1.5 X 20 | | 1217 | PSS14M | SET SCREW M8-1.25 X 12 | | 1218 | PNO4M | HEX NUT M47 | | 1219 | PLW03M | LOCK WASHER 6MM | | 1220 | PCAPO2M | CAP SCREW M6-1 X 20 | | 1221 | PSB1046PF1220 | SAFETY SWITCH BRACKET | | 1222 | PSB1046PF1221 | CHUCK GUARD SAFETY SWITCH TZ9212 | | 1223 | PS65M | PHLP HD SCR M47 X 40 | | 1224 | PN03M | HEX NUT M8-1.25 | | 1225 | PWO1M | FLAT WASHER 8MM | | 1226 | PCAP14M | CAP SCREW M8-1.25 X 20 | | 1227 | PSB1048PF1227 | BACKSPLASH | | 1228 | PSB1046PF1227 | CHUCK GUARD KNOB 1/2-13 | | 1229 | PN06 | HEX NUT 1/2-13 | | REF | PART# | DESCRIPTION | |------|---------------|-----------------------------| | 1230 | PB52 | HEX BOLT 1/2-13 X 1 | | 1231 | PSB1046PF1230 | CHUCK GUARD PIVOT ROD | | 1232 | PSB1046PF1231 | CHUCK SAFETY GUARD | | 1233 | PCAP26M | CAP SCREW M6-1 X 12 | | 1234 | PSS34M | SET SCREW M58 X 16 | | 1235 | PSB1048PF1235 | FLUID TROUGH RIGHT SIDE | | 1236 | PSB1048PF1236 | FLUID TROUGH LEFT SIDE | | 1237 | PSB1048PF1237 | COOLANT HOSE 3/8" X 185" | | 1238 | PSB1046PF1236 | PIPE NIPPLE 3/8 PT X 3/8 PH | | 1239 | PSB1046PF1237 | COOLANT PUMP ASSEMBLY | | 1240 | PSB1046PF1238 | COOLANT TANK | | 1241 | PSB1046PF1239 | COOLANT TANK COVER | | 1242 | PS68M | PHLP HD SCR M6-1 X 10 | | 1243 | PSB1048PF1243 | RIGHT SIDE SPLASH TRAY | | 1244 | PSB1048PF1244 | LEFT SIDE SPLASH TRAY | | 1245 | PSB1046PF1243 | MOTOR ACCESS COVER | | 1246 | PSB1048PF1246 | BACKSPLASH MOUNTING POST | | 1247 | PSB1046PF1245 | CONTROL PANEL PLATE | | 1248 | PSB1048PF1248 | LEFT CABINET | | 1249 | PSB1048PF1249 | CENTER CABINET | | 1250 | PSB1048PF1250 | RIGHT CABINET | | 1251 | PSB1046PF1248 | LEVELING FOOT | | 1252 | PB80M | HEX BOLT M16-2 X 55 | | 1253 | PSB1046PF1250 | CHUCK GUARD WINDOW | | 1254 | РВНЅОЭМ | BUTTON HD CAP SCR M6-1 X 12 | | 1255 | PCAPO1M | CAP SCREW M6-1 X 16 | | 1256 | PSB1048PF1256 | HEX NUT M6-1 X 16 | | 1257 | PSB1046PF1252 | END GEAR COVER ASSEMBLY | ## **Brake** | REF | PART# | DESCRIPTION | |------|---------------|------------------------------------| | 1303 | РЕСОЭМ | E-CLIP 6MM | | 1305 | PSB1046PF1305 | CLEVIS PIN 6MM | | 1306 | PSB1046PF1305 | CLEVIS PIN 6MM | | 1307 | PSB1046PF1307 | SPACER | | 1308 | PB01M | HEX BOLT M10-1.5 X 30 | | 1309 | PSB1046PF1309 | ROCKER ARM | | 1310 | PW01M | FLAT WASHER 8MM | | 1314 | PW01M | FLAT WASHER 8MM | | 1315 | PLN05M | LOCK NUT M10-1.5 | | 1316 | PSB1046PF1316 | ROCKER ARM MOUNTING BRACKET | | 1317 | PCAP07M | CAP SCREW M6-1 X 30 | | 1318 | PLW03M | LOCK WASHER 6MM | | 1319 | PSB1046PF1319 | SHIELD PLATE | | 1320 | PSB1046PF1320 | BRAKE DRUM | | 1324 | PSB1046PF1324 | BRAKE SHOE SET 2PC | | 1325 | PSB1046PF1325 | EXTENSION SPRING | | 1326 | PECO15M | E-CLIP 8MM | | 1327 | PSB1046PF1327 | BRAKE SHOE ANCHOR PIN | | 1328 | PSB1046PF1328 | BRAKE ACTUATOR | | 1329 | PSB1046PF1329 | ACTUATOR PIN | | 1330 | PSB1046PF1330 | ACTUATOR ROLLER | | 1334 | PSB1046PF1334 | ACTUATOR BUSHING | | 1335 | P0RP010 | 0-RING 9.8 X 1.9 P10 | | 1336 | PRO2M | EXT RETAINING RING 14MM | | 1337 | PSB1046PF1337 | MOUNTING BLOCK | | 1338 | PSB1046PF1338 | BRAKE ACTUATOR ROD (SB1046PF-48PF) | | 1338 | PSB1056F1338 | BRAKE ACTUATOR ROD (SB1056F-58F) | | 1339 | PSB1046PF1339 | ROD RETAINING PLATE | | 1340 | PCAP40M | CAP SCREW M8-1.25 X 35 | | | | | | REF | PART# | DESCRIPTION | |------|---------------|---| | 1344 | PSB1046PF1344 | EXTENSION SPRING | | 1345 | PSB1046PF1345 | SPRING ANCHOR PIN 5 X 30 | | 1346 | PSB1046PF1346 | SPINDLE LEVER/BRAKE CONTROL ARM | | 1349 | PSB1046PF1349 | CONTROL ARM RETAINING PLATE | | 1350 | PLNO4M | LOCK NUT M8-1.25 | | 1353 | PN03M | HEX NUT M8-1.25 | | 1355 | PSB1046PF1355 | BRAKE PEDAL PIN | | 1356 | PSB1046PF1356 | PEDAL PIN SHOULDER BOLT | | 1357 | PSB1046PF1357 | ROLLER STANDOFF | | 1358 | PSB1046PF1358 | ROLLER | | 1359 | PCAP31M | CAP SCREW M8-1.25 X 25 | | 1360 | PSB1046PF1360 | CONTROL ARM BRACKET | | 1364 | PSB1046PF1364 | STOP PLATE | | 1365 | PSB1046PF1365 | STOP PLATE SHIELD | | 1366 | PCAPO4M | CAP SCREW M6-1 X 10 | | 1367 | PB116M | HEX BOLT M10-1.5 X 45 | | 1368 | PSB1046PF1368 | LOWER CLUTCH ACTUATOR ROD (SB1046PF-48PF) | | 1368 | PSB1056F1368 | LOWER CLUTCH ACTUATOR ROD (SB1056F-58F) | | 1369 | PSB1046PF1369 | ACTUATOR ROD JAM NUT M12-1.75 | | 1370 | PSB1046PF1370 | ACTUATOR ROD COUPLER M12-1.75 | | 1374 | PN09M | HEX NUT M12-1.75 | | 1375 | PSB1046PF1375 | UPPER CLUTCH ACTUATOR ROD (SB1046PF-48PF) | | 1375 | PSB1056F1375 | UPPER CLUTCH ACTUATOR ROD (SB1056F-58F) | | 1376 | PRP39M | ROLL PIN 4 X 20 | | 1377 | PSB1046PF1377 | UNIVERSAL JOINT ASSEMBLY | | 1378 | PSB1046PF1378 | BRAKE DRUM FLAT WASHER | | 1379 | PRP02M | ROLL PIN 3 X 16 | | 1380 | PLW03M | LOCK WASHER 6MM | | 1381 | PCAPO2M | CAP SCREW M6-1 X 20 | ## **Tailstock** | REF | PART# | DESCRIPTION | |------|---------------|-------------------------------| | 1400 | PSB1046PF1400 | TAILSTOCK ASSEMBLY | | 1401 | PSB1046PF1401 | HANDWHEEL HANDLE CAP SCREW | | 1402 | PSB1046PF1402 | HANDWHEEL HANDLE | | 1403 | PSS19M | SET SCREW M8-1.25 X 30 | | 1404 | PSB1046PF1404 | HANDWHEEL CENTER CAP | | 1405 | PSB1046PF1405 | HANDWHEEL | | 1406 | PSB1046PF1406 | COMPRESSION SPRING | | 1407 | PSTB001 | STEEL BALL 1/4 | | 1408 | PSB1046PF1408 | GRADUATED DIAL | | 1409 | PSB1046PF1409 | THRUST BEARING 3542AS2 | | 1410 | PSB1046PF1410 | GRADUATED DIAL BASE | | 1411 | PCAPO2M | CAP SCREW M6-1 X 20 | | 1412 | PSB1046PF1412 | LEADSCREW W/NUT | | 1413 | PK10M | KEY 5 X 5 X 12 | | 1414 | PCAP13M | CAP SCREW M8-1.25 X 30 | | 1415 | PSB1046PF1415 | QUILL ALIGNMENT GUIDE | | 1416 | PLUBEOO1 | TAP-IN BALL OILER 1/4 | | 1417 | PSB1046PF1417 | TAILSTOCK CASTING | | 1418 | PSB1046PF1418 | QUILL LOCK LEVER ASSEMBLY | | 1419 | PCAPO4M | CAP SCREW M6-1 X 10 | | 1420 | PCAP128M | CAP SCREW M8-1.25 X 70 | | 1421 | PSB1046PF1421 | TAILSTOCK LOCK LEVER ASSEMBLY | | 1422 | PSB1046PF1422 | TAILSTOCK LOCK LEVER PIN | | 1423 | PSB1046PF1423 | QUILL | | REF | PART# | DESCRIPTION | |------|---------------|--------------------------------| | 1424 | PN29M | HEX NUT M18-2.5 | | 1425 | PW18M | FLAT WASHER 18MM | | 1426 | PSB1046PF1426 | OFFSET INDICATOR PLATE | | 1427 | PSS73M | SET SCREW M10-1.5 X 30 | | 1428 | PSB1046PF1428 | ALIGNMENT PIN | | 1429 | PSB1046PF1429 | PIVOT BLOCK | | 1430 | PBHS16M | BUTTON HD CAP SCR M58 X 16 | | 1431 | PSB1046PF1431 | V-WAY WIPER PLATE | | 1432 | PSB1046PF1432 | V-WAY WIPER | | 1433 | PSB1046PF1433 | STRAIGHT WAY WIPER PLATE | | 1434 | PSB1046PF1434 | STRAIGHT WAY WIPER | | 1435 | PSB1046PF1435 | TAILSTOCK BASE (SB1046PF-48PF) | | 1435 | PSB1056F1435 | TAILSTOCK BASE (SB1056F-58F) | | 1436 | PW18M | FLAT WASHER 18MM | | 1437 | PLW12M | LOCK WASHER 18MM | | 1438 | PSB1046PF1438 | TAILSTOCK ANCHOR BOLT | | 1439 | PSB1046PF1439 | TAILSTOCK GIB | | 1440 | PSB1046PF1440 | TAILSTOCK GIB ADJUST SCREW | | 1441 | PSB1046PF1441 | CLAMP PLATE | | 1442 | PSB1046PF1442 | TAILSTOCK MOUNTING BOLT | | 1443 | PSB1046PF1443 | CLAMP BLOCK | | 1444 | PSB1046PF1444 | TAILSTOCK MOUNTING STUD | | 1445 | PRP31M | ROLL PIN 6 X 36 | | 1446 | PSB1046PF1446 | SQUARE DRILLED NUT | ## **Thread Dial** | REF | PART# | DESCRIPTION | |------|---------------|------------------------| | 1500 | PSB1046PF1500 | THREAD DIAL ASSEMBLY | | 1501 | PSB1046PF1501 | DIAL PLATE | | 1502 | PSB1046PF1502 | PIVOT BOLT | | 1503 | PSB1046PF1503 | DIAL INDICATOR CASTING | | 1504 | PSB1046PF1504 | KNURLED KNOB | | 1505 | PSB1046PF1505 | PIVOT STUD-DE | | 1507 | PSB1046PF1507 | GEAR SPACER | | 1508 | PSB1046PF1508 | DIAL GEAR 16T | | 1509 | PCAPO4M | CAP SCREW M6-1 X 10 | | 1511 | PSS02M | SET SCREW M6-1 X 6 | | 1512 | PN03M | HEX NUT M8-1.25 | # **Micrometer Stop** | REF | PART# | DESCRIPTION | |------|---------------|----------------------------------| | 1600 | PSB1046PF1600 | MICROMETER STOP ASSEMBLY | | 1601 | PCAP71M | CAP SCREW M10-1.5 X 60 | | 1602 | PRIVOO1M | STEEL FLUTED RIVET 2 X 5MM | | 1603 | PSB1046PF1603 | INDICATOR PLATE | | 1604 | PSB1046PF1604 | MICROMETER DIAL | | 1605 | PSB1046PF1605 | INDICATOR STOP CASTING | | 1606 | PSB1046PF1606 | INDICATOR STOP ROD | | 1607 | PSB1046PF1607 | CLAMP PLATE | | 1608 | PSS10M | SET SCREW M10-1.5 X 20 | | 1609 | PSB1046PF1609 | PLUNGER COPPER | | 1610 | PSS06M | SET SCREW M8-1.25 X 16 | | 1611 | PSB1046PF1611 | DOG POINT SET SCREW M8-1.25 X 12 | | 1612 | PSS14M | SET SCREW M8-1.25 X 12 | # **Steady Rest** | REF | PART# | DESCRIPTION | |-------|-----------------|----------------| | | PSB1046PF1700 | STEADY REST AS | | 47700 | DC DA OF CTATOO | CTEADY/DECT AC | | 1700 | PSB1046PF1700 | STEADY REST ASSEMBLY (SB1046PF-48PF) | |------|---------------|--------------------------------------| | 1700 | PSB1056F1700 | STEADY REST ASSEMBLY (SB1056F-58F) | | 1701 | PSB1046PF1701 | FINGER ADJUSTMENT KNOB ASSY | | 1702 | PSB1046PF1702 | FINGER ASSEMBLY | | 1703 | PSS20M | SET SCREW M8-1.25 X 8 | | 1704 | PSB1046PF1704 | CLAMP SCREW KNOB | | 1705 | PSB1046PF1705 | CLAMP SCREW | | 1706 | PSB1046PF1706 | CASTING 2PC (SB1046PF-48PF) | | 1706 | PSB1056F1706 | CASTING 2PC (SB1056F-58F) | | 1707 | PSB1046PF1707 | DOWEL PIN | | 1708 | PSB1046PF1708 | DOG PT LEAF SCREW M8-1.25 X 25 | | 1709 | PSB1046PF1709 | HINGE PIN | | 1710 | PSB1046PF1710 | HEX NUT M18-2.25 | | 1711 | PLW12M | LOCK WASHER 18MM | | 1712 | PSB1046PF1712 | STUD-FT M18-2.25 X 75 | | 1713 | PSB1046PF1713 | CLAMP PLATE | # **Follow Rest** | REF | PART# | DESCRIPTION | |------|---------------|--------------------------------------| | 1800 | PSB1046PF1800 | FOLLOW REST ASSEMBLY (SB1046PF-48PF) | | 1800 | PSB1056F1800 | FOLLOW REST ASSEMBLY (SB1056F-58F) | | 1801 | PSB1046PF1801 | ADJUSTMENT KNOB ASSEMBLY | | 1802 | PSB1046PF1802 | FINGER ASSEMBLY | | 1803 | PSS06M | SET SCREW M8-1.25 X 16 | | 1804 |
PSB1046PF1804 | FOLLOW REST CASTING (SB1046PF-48PF) | | 1804 | PSB1056F1804 | FOLLOW REST CASTING (SB1056F-58F) | | 1805 | PSB1046PF1708 | DOG PT LEAF SCREW M8-1.25 X 25 | #### **Electrical Cabinet & Control Panel** #### Electrical Cabinet #### Control Panel (viewed from behind) **REF** 1916 1917 PART# PSB1046PF1916 PSB1046PF1917 PSB1046PF1918 | Τ# | DESCRIPTION | |----|-------------| | | Τ# | | 1900 | PSB1046PF1900 | ELECTRICAL CABINET ASSEMBLY | |------|---------------|--------------------------------| | 1901 | PSB1046PF1901 | CONTACTOR AB C23400 | | 1902 | PSB1046PF1902 | OL RELAY AB 21-25A | | 1903 | PSB1046PF1903 | MASTER POWER SWITCH | | 1904 | PSB1046PF1904 | CONTACTOR AB CO9400 | | 1905 | PSB1046PF1905 | OL RELAY AB .254A | | 1906 | PSB1046PF1906 | CIRCUIT BREAKER 1492SP 25A | | 1907 | PSB1046PF1907 | CIRCUIT BREAKER 1492SP 6A | | 1908 | PSB1046PF1908 | TRANSFORMER SUEN LIANG SP-TBSW | | 1909 | PSB1046PF1909 | FUSE 4A 250V TIME-DELAY | | 1910 | PSB1046PF1910 | FUSE 500M 250V TIME-DELAY | |------|---------------|-----------------------------| | 1911 | PSB1046PF1911 | TERMINAL BAR 17P | | 1912 | PSB1046PF1912 | ELECTRICAL PANEL BACK PLATE | | 1913 | PSB1046PF1913 | STOP BUTTON | | 1914 | PSB1046PF1914 | MOTOR ON BUTTON | | 1915 | PSB1046PF1915 | MOTOR OFF BUTTON | POWER LAMP COOLANT PUMP ON BUTTON COOLANT PUMP OFF BUTTON DESCRIPTION # Accessories | REF | PART# | DESCRIPTION | |------|--------|----------------| | 2001 | SB1312 | 3-JAW CHUCK 12 | | 2001 | SB1312 | 3-JAW CHUCK 12" | |------|---------------|---------------------------------| | 2002 | PSB1042PF1802 | FACEPLATE ASSEMBLY 14" | | 2003 | SB1232 | 4-JAW CHUCK 14" | | 2004 | PSB1042PF1804 | DEAD CENTER MT#5 | | 2005 | PSB1042PF1805 | DEAD CENTER CARBIDE-TIPPED MT#5 | | 2006 | PSB1042PF1806 | SPINDLE SLEEVE MT#7-MT#5 | | 2007 | PSB1042PF1807 | TOOL BOX | | 2008 | PAW10M | HEX WRENCH 10MM | | 2009 | PAW1510M | HEX WRENCH SET 1.5-10MM | | 2010 | PSB10531710 | FOOT CAST-IRON | | REF | PART# | DESCRIPTION | |------|---------------|-------------------------------------| | 2011 | PSDF2 | STANDARD SCREWDRIVER #2 | | 2012 | PSDP2 | PHILLIPS SCREWDRIVER #2 | | 2013 | PWR1012 | WRENCH 10/12MM | | 2014 | PWR1417 | WRENCH 14/17MM | | 2015 | PWR2224 | WRENCH 22/24MM | | 2016 | PWR27 | COMBO WRENCH 27MM | | 2017 | PSB10531717 | DRO ASSEMBLY FAGOR 201-T 2-AXIS | | 2018 | PSB1042PF1818 | 4-WAY TOOL POST WRENCH | | 2019 | SB1404 | 3-JAW CHUCK D1-8 BACK PLATE 12-1/2" | #### **Front Machine Labels** | REF | PART# | DESCRIPTION | |------|---------------|--------------------------------| | 2101 | PSB1046PF2101 | MACHINE ID LABEL (SB1046PF) | | 2101 | PSB1047PF2101 | MACHINE ID LABEL (SB1047PF) | | 2101 | PSB1048PF2101 | MACHINE ID LABEL (SB1048PF) | | 2101 | PSB1056F2101 | MACHINE ID LABEL (SB1056F) | | 2101 | PSB1057F2101 | MACHINE ID LABEL (SB1057F) | | 2101 | PSB1058F2101 | MACHINE ID LABEL (SB1058F) | | 2102 | PSB1048PF2102 | UNTRAINED PERSONNEL LABEL | | 2103 | PSBLABEL02HL | DISCONNECT POWER LABEL HL | | 2104 | PSBLABEL06HL | BIOHAZARD LABEL HL | | 2105 | PSB1046PF2105 | TOOLROOM SIZE LABEL (SB1046PF) | | 2105 | PSB1047PF2105 | TOOLROOM SIZE LABEL (SB1047PF) | | 2105 | PSB1048PF2105 | TOOLROOM SIZE LABEL (SB1048PF) | | 2105 | PSB1056F2105 | TOOLROOM SIZE LABEL (SB1056F) | | 2105 | PSB1057F2105 | TOOLROOM SIZE LABEL (SB1057F) | | 2105 | PSB1058F2105 | TOOLROOM SIZE LABEL (SB1058F) | | 2106 | PSB1048PF2106 | CARRIAGE LOCK LABEL | | REF | PART# | DESCRIPTION | |------|---------------|-------------------------------| | 2107 | PSB1048PF2107 | THREAD CHART | | 2108 | PSB1048PF2108 | ONE SHOT OILER LABEL | | 2109 | PSB1046PF2109 | MODEL NUMBER LABEL (SB1046PF) | | 2109 | PSB1047PF2109 | MODEL NUMBER LABEL (SB1047PF) | | 2109 | PSB1048PF2109 | MODEL NUMBER LABEL (SB1048PF) | | 2109 | PSB1056F2109 | MODEL NUMBER LABEL (SB1056F) | | 2109 | PSB1057F2109 | MODEL NUMBER LABEL (SB1057F) | | 2109 | PSB1058F2109 | MODEL NUMBER LABEL (SB1058F) | | 2110 | PSBLABEL04HL | SAFETY GLASSES LABEL HL | | 2111 | PSBLABEL08HL | ENTANGLEMENT HAZARD LABEL | | 2112 | PSB1048PF2112 | CHUCK KEY LABEL | | 2113 | PSBLABEL01HL | READ MANUAL LABEL HL | | 2114 | SB1322 | SOUTH BEND NAMEPLATE | | 2115 | PSBPAINT01 | SB GRAY TOUCH-UP PAINT | | 2116 | PSBPAINT02 | SB LIGHT BLUE TOUCH-UP PAINT | | 2117 | PSBPAINT03 | SB DARK BLUE TOUCH-UP PAINT | #### **Rear Machine Labels** | REF | PART# | DESCRIPTION | REF | PART# | DESCRIPTION | |------|--------------|---------------------------|------|---------------|--------------------| | 2103 | PSBLABEL02HL | DISCONNECT POWER LABEL HL | 2119 | PSB1048PF2119 | 440V 3-PHASE LABEL | | 2118 | PSBLABEL15L | ELECTRICITY LABEL | | | | # WARNING The safety labels provided with your machine are used to make the operator aware of the machine hazards and ways to prevent injury. The owner of this machine MUST maintain the original location and readability of these safety labels. If any label is removed or becomes unreadable, REPLACE that label before using the machine again. Contact South Bend Lathe Co. at (360) 734-1540 or www.southbendlathe.com to order new labels. #### WARRANTY ## **Warranty** This quality product is warranted by South Bend Lathe Company to the original buyer for one year from the date of purchase. This warranty does not apply to consumable parts, or defects due to any kind of misuse, abuse, negligence, accidents, repairs, alterations or lack of maintenance. We do not reimburse for third party repairs. In no event shall we be liable for death, injuries to persons or property, or for incidental, contingent, special or consequential damages arising from the use of our products. We do not warrant or represent that this machine complies with the provisions of any law, act, code, regulation, or standard of any domestic or foreign government, industry, or authority. In no event shall South Bend's liability under this warranty exceed the original purchase price paid for this machine. Any legal actions brought against South Bend Lathe Company shall be tried in the State of Washington, County of Whatcom. This is the sole written warranty for this machine. Any and all warranties that may be implied by law, including any merchantability or fitness, for any purpose, are hereby limited to the duration of this warranty. To take advantage of this warranty, contact us by mail or phone to give us the details of the problem you are having. Thank you for your business and continued support. South Bend Lathe Co. P.O. Box 2027 Bellingham, WA 98227 PHONE: (360) 734-1540 (Administrative Offices) FAX: (360) 676-1075 (International) FAX: (360) 734-1639 (USA only) southbendlathe.com **Printed In U.S.A.** **#BLTS14126**